

NEWWOOD SOLUTIONS Ltd

Derby Office: 15 Kings Croft, Allestree, Derby, DE22 2FP. Tel +44 (0)1332 721326

Reading Office: 13 Highfield Road, Tilehurst, Reading RG31 6YR. Tel +44 (0) 118 9012298

Email: sales@newwoodsolutions.co.uk

Web: www.newwoodsolutions.co.uk

DIO8005 VME64x 128Bit TTL DIGITAL I/O BOARD

(Optical Isolation optional through rear mounted transition board)

USERS MANUAL

Document Nos.: DIO8005/UTM/2.0 Date: 12/02/2009 Author: AB/MCB/DAN

CONTENTS

1.	PRODUCT DESCRIPTION	3
	1.1 KEY FEATURES	5
2.	USE OF THE VME DATA BUS AND MEMORY ACCESS	6
	2.1 VME Addressing	6
	2.1.1 Short Addressing (A16 AM29Hex and 2DHex)	6
	2.1.2 Standard Addressing (A24 AM39h and 3Dh)	
	2.1.3 Configuration ROM (A24 AM2FHex)	7
3.	REGISTERS	8
	3.1 LAST KNOWN CHANGE REGISTER (READ/WRITE)	9
	3.2 CONTROL/STATUS REGISTER DIGITAL IO (CSR IO) (READ/WRITE)	
	3.2.1 LAMP RST Operation	
	3.3 DIGITAL INPUT INTERRUPT MASK REGISTER IMR (READ/WRITE)	11
	3.4 DE-BOUNCE BIT REGISTER (READ/WRITE)	
	3.5 PULSE SELECT REGISTER PSR IP (READ/WRITE)	
	3.6 PULSE PARAMETER REGISTER PPR IP (READ/WRITE)	
	3.7 FIFO REGISTER FIFO IP (READ/WRITE)	
	3.7.1 Example of FIFO contents	
	 3.8 FIFO MEMORY (READ) 3.9 INTERRUPT REQUEST VECTOR IRV IP (READ/WRITE) 	
	3.10 CONTROL & STATUS REGISTER (VME)	14۱4 1 <i>4</i>
	3.11 VME SYSTEM RESET	
4.		
4.		-
	4.1 EXAMPLE OF A 16BIT READ/WRITE TO A 32BIT REGISTER	
	4.2 EXAMPLE OF A READ/WRITE TO A 16BIT REGISTER	16
5.	INTERRUPT PROCESS	17
6.	CONFIGURATION ROM	18
	6.1 BOARD SERIAL NO.	18
	6.2 OTHER JUMPER SETTINGS	
	6.2.1 LI/I*, LI/O* Jumper Settings	
7.		
8.	PRODUCT SPECIFICATIONS	21
9.	VME CONNECTORS	
10		
	10.1 QUICK ADDRESSING TEST	
	10.2 SIMPLE DIGITAL INPUT READING	
	Set Up	
	10.3 SIMPLE DIGITAL OUTPUT DRIVING.	
	Set Up	
	10.4 READING THE FIFO.	
	Set Up Reading Input Values from the FIFO	
	10.5 INTERRUPTS	
	Set Up	
11		
	11.1 EPICS DRIVER INTRODUCTION	27

1. PRODUCT DESCRIPTION

The DIO 8005 is a 6U (double height) VME64x digital I/O board constructed to the VME64x standard. It provides 128 TTL digital I/O bits organised in four groups of 32 bits each with an input and an output strobe. Each group of 32 bits may be programmed to act as inputs or outputs.

For users familiar with the Hytec 8505 Industry Pack (IP) Card, the 8005 can be considered as 8 x 8505 on a single carrier card, but with the following restrictions...

- 1. Each block of 32 bits (equivalent to 2 x 8505) can ONLY be set up as All Inputs or All Outputs.
- 2. Setting parameters such a de-bounce value, scan rate, etc also applies to the whole 32 bit block.
- 3. ONLY Internal Clock is available, the 8505 external clock or strobe input options are NOT available.

When a group is in 'input mode', the module features change-of-state detection and contact debounce. A small FIFO memory, one for each input group, allows a historical record of the changeof-state input data to be stored; up to 64 samples. A further register associated with each input group controls which bits may generate an interrupt. This function has no effect when in output mode.

When a group is in 'output mode', outputs may be programmed as levels or pulses of programmed duration. A pulse parameter register determines the duration of pulsed outputs up to 100 seconds.

All the above registers occupy I/O space on the card in four groups, starting at offset zero+a (where a = 000hex, 100hex, 200hex or 300hex) as follows:

Offset	Name	Description
a+0	LKC	Last Known Change/Data Register
a+4	CSR	Control and Status Register
a+8	IMR	Mask Register
a+C	DBR	De-bounce Register
a+10	PSR	Pulse Select Register
a+14	PPR	Pulse Parameter Register
a+18	FIFO_R	FIFO Register
a+1C	LKC_FIFO	FIFO Memory
a+20	IRV	Interrupt Request Vector

The module features hot-swap capability with auto power up and host interaction. An on-board FPGA allows full mapping of the board memory, I/O and ID spaces.

The VME interface supports short I/O access A16:D32:D16, standard I/O access A24:.D32:D16:

One of VME bus interrupt lines IRQ1 to IRQ7 can be selected and enabled by writing to an onboard register. The base address of extended memory can be set by register (offset addressing) or by geographical addressing lines.

Two groups of four front panel mounted LED's light to visually indicate when a change of state has been detected and the scan rate on individual groups (A, B, C and D) of 32 bits. See Table in Section 7 for more details.

There is a TTL 'Inhibit' input on the front panel that allows the user to control when data is written to the FIFO memory.

All I/Os are sampled via the VME backplane P0 and P2 connectors as specified in the VME64 extensions specification. The I/O signals connect via rear mounted transition cards.

Hytec has available a range of rear-mounted transition cards with high-density 50-way [SCSI2] connectors, which can cater for all I/O signals and provide any necessary signal conditioning, including optical isolation.

Transition Card	Description
8304	A Straight Through Signal Transition Board, which allows direct electrical access to TTL Level Signals from the 8005.
8308	A 4-Group (directly relating to 8005's 32 bit Groups A, B, C and D) Mixed Signal Transition Board, which accepts up to four 9307 or 9308 signal conditioning boards (see table below). This allows any set up mix of inputs and outputs on the 8005 to be perfectly matched to its signal conditioning board.

Signal Conditioning Board	Description
9307	This board provides 32 opto-coupled inputs
9308	This board provides 32 opto-coupled high current output MOSFET drivers.

1.1 Key Features

- VME64 extensions / Industry Pack Carrier Board
- VME64x rear panel I/O
- Full EMC shielding and insertion/extraction handles
- Fully Hot-Swap capable with auto power-up and host interaction
- 6U (double height) VME base card
- User selectable VME interrupt level
- Geographical addressing
- Front panel TTL Inhibit signals allow control of timing synchronisation
- VME 64x Configuration ROM
- On-board 32MHz clock generation
- VME64x guide pin and slot keying
- 3.3V and 5V supply to P2 connector

2. USE OF THE VME DATA BUS AND MEMORY ACCESS

2.1 VME Addressing

The module uses A16/D32/D16/ or A24/D32/D16 for accesses to Registers.

The base address of these areas is determined either by PCB jumper settings (J6 to J10) or by VME64x geographical addressing lines GA0 to GA4.

The PCB jumpers are used only where geographical addressing is not available and *will* override the GA lines so they should not be fitted in a GA crate.

Address	Offset	Range	Assignment	Size
I/O Base+	0x0000	0x0000	Registers I/O Bank A I/O 1 to 32	32 Bytes
		0x001C		
I/O Base +	0x0100	0x0100	Registers I/O Bank B I/O 33 to 64	32 Bytes
		0x011C		
I/O Base +	0x0200	0x0200	Registers I/O Bank C I/O 65 to 96	32 Bytes
		0x021C		
I/O Base+	0x0300	0x0300	Registers I/O Bank D I/O 97 to	32 Bytes
		0x031C	128	
I/O Base+	0x0400	0x0400	Carrier on board Registers VME	32 Bytes
		0x041E		
I/O Base+	0x0480	0x0480	Green Springs Type ID	128 Bytes
		0x04FF	(Not Used/Not Implemented)	-
I/O Base+	0x0600	0x0600	VME64x configuration ROM	512 Bytes
		0x07FF	(See Configuration ROM)	-
	[DIO-8005 A	16 and A24 address Map	

2.1.1 Short Addressing (A16 AM29Hex and 2DHex)

In Short address mode the geographical addressing lines equate to the address lines GA0 = A11 to GA4 = A15 and the jumper address setting J6 = A11 to J10 = A15.

A11 - A15 is the module address determined by the setting of the relevant PCB jumpers or geographical address lines

Address modifiers

I/O, ID and Carrier board Configuration Registers:AM29- Short (A16) non-privileged.AM2D- Short (A16) supervisory.

2.1.2 Standard Addressing (A24 AM39h and 3Dh)

The A24 base address is determined either by PCB jumper settings J6=A19 to J10=A23 or by geographical addressing lines GA0 =A19 to GA4=A23.

Address modifiers I/O, ID and Carrier board Configuration Registers: AM39 - Standard (A24) non-privileged. AM3D - Standard (A24) supervisory.

2.1.3 Configuration ROM (A24 AM2FHex)

See <u>Section 6</u> for the contents of the configuration ROM.

Address modifiers

AM2F - Configuration ROM/Control & Status Registers. Address selection as above

The ROM can be read using A16/A24 addressing with AM codes 29Hex, 2DHex, 39Hex or 3DHex and 2FHex for CR/CSR space.

3. REGISTERS

The configuration and control of the 8005 module is via registers:

Base	Offset	Register	Description
Base +	0x000	Last Known Change/ Data Reg A	Holds the last known state of inputs in group A, 32Bits
Base +	0x004	Control & Status Register IO A	CSR set up of I/O Group A
Base +	0x008	Mask Register IMR A	Selects inputs to mask in group A. 32 bit Register
Base +	0x00C	De-bounce Bit Register DBR A	Selects inputs to de-bounce in group A. 32 bit Register
Base +	0x010	Pulse Select Register PSR A	Selects which outputs will be pulsed outputs in Group A,32Bits
Base +	0x014	Pulse Parameter Register PPR A	Selects frequency of pulsed outputs in Group A, 32Bits
Base +	0x018	FIFO Register FIFO_REG A	FIFO control Register for Group A, flag status, FIFO enable & clear
Base +	0x01C	FIFO Memory FIFO_MEM A	Holds the history of change state values for Group A,
Base +	0x020	Interrupt Request Vector IRV A	Holds the interrupt vector for Group A
Base +	0x100	Last Known Change/ Data Reg B	Holds the last known state of inputs in group B, 32Bits
Base +	0x104	Control & Status Register IO B	CSR set up of I/O Group B
Base +		Mask Register IMR B	Selects inputs to mask in group B. 32 bit Register
Base +	0x10C	De-bounce Bit Register DBR B	Selects inputs to de-bounce in group B. 32 bit Register
Base +	0x110	Pulse Select Register PSR B	Selects which outputs will be pulsed outputs in Group B,32Bits
Base +	0x114	Pulse Parameter Register PPR B	Selects frequency of pulsed outputs in Group B,32Bits
Base +	0x118	FIFO Register FIFO_REG B	FIFO control Register for Group B, flag status, FIFO enable & clear
Base +	0x11C	FIFO Memory FIFO_MEM B	Holds the history of change state values for Group B
Base +	0x120	Interrupt Request Vector IRV B	Holds the interrupt vector for Group B
Base +	0x200	Last Known Change/ Data Reg C	Holds the last known state of inputs in group C, 32Bits
Base +	0x204	Control & Status Register IO C	CSR set up of I/O Group C
Base +	0x208	Mask Register IMR C	Selects inputs to mask in group C. 32 bit Register
Base +	0x20C	De-bounce Bit Register DBR C	Selects inputs to de-bounce in group C. 32 bit Register
Base +	0x210	Pulse Select Register PSR C	Selects which outputs will be pulsed outputs in Group C,32Bits
Base +	0x214	Pulse Parameter Register PPR C	Selects frequency of pulsed outputs in Group C,32Bits
Base +	0x218	FIFO Register FIFO_REG C	FIFO control Register for Group C, flag status, FIFO enable & clear
Base +	0x21C	FIFO Memory FIFO_MEM C	Holds the history of change state values for Group C
Base +	0x220	Interrupt Request Vector IRV C	Holds the interrupt vector for Group C
Base +	0x300	Last Known Change/ Data Reg D	Holds the last known state of inputs in group D, 32Bits
Base +		Control & Status Register IO D	CSR set up of I/O Group D
Base +	0x308	Mask Register IMR D	Selects inputs to mask in group D. 32 bit Register
Base +	0x30C	De-bounce Bit Register DBR D	Selects inputs to de-bounce in group D. 32 bit Register
Base +	0x310	Pulse Select Register PSR D	Selects which outputs will be pulsed outputs in Group D,32Bits
Base +	0x314	Pulse Parameter Register PPR D	Selects frequency of pulsed outputs in Group D,32Bits
Base +	0x318	FIFO Register FIFO_REG D	FIFO control Register for Group D, flag status, FIFO enable & clear
Base +	0x31C	FIFO Memory FIFO_MEM D	Holds the history of change state values for Group D
Base +	0x320	Interrupt Request Vector IRV D	Holds the interrupt vector for Group D
Base +	0x400	Control & Status Register	Set up of VME

DIO-8005 On-Board Registers

Note: The Last Known Change Registers form the 128 bits I/O data

There are 4 groups of 9 application (I/O) registers, each group of 32 I/Os are offset by 'a' as follows. Group A = 0x00Hex offset, Group B = 100Hex offset, Group C = 200Hex offset and Group D = 300Hex offset.

3.1 Last Known Change Register (Read/Write)

Address:	Base + 0x0000 = Group A I/O = 1 to 32
Address:	Base + 0x0100 = Group B I/O = 33 to 64
Address:	Base + 0x0200 = Group C I/O = 65 to 96
Address:	Base + 0x0300 = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
LKC15	LKC14	LKC13	LKC12	LKC11	LKC10	LKC9	LKC8	LKC7	LKC6	LKC5	LKC4	LKC3	LKC2	LKC1	LKC0

D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
LKC31	LKC30	LKC29	LKC28	LKC27	LKC26	LKC25	LKC24	LKC23	LKC22	LKC21	LKC20	LKC19	LKC18	LKC17	LKC16

This register shows the last known state of the I/O data. In the case of inputs it shows the input states conditioned by de-bounce and change-of-state detection. For outputs, the new data should be written here.

At switch on the default value is 0Hex

3.2 Control/Status Register Digital IO (CSR IO) (Read/Write)

Address:	Base + 0x0004 = Group A I/O = 1 to 32
Address:	Base + 0x0104 = Group B I/O = 33 to 64
Address:	Base + 0x0204 = Group C I/O = 65 to 96
Address:	Base + 0x0304 = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
COS	LAMP	INV	NU	NU	МО	NU	SH1	SH0	SCAN	SCAN	COS	COS	NU	NU	SCAN
BIT	RST	INPUT							T1	Т0	T1	Т0			EN

SCAN EN Start scanning digital inputs. Active high. When this bit is set high the inputs are sampled at the programmed rate.

COS T0-T1 De-bounce clock frequency selection determined by the following table:

CSF	r I/O	De-bounce Scan rate
Bit 4	Bit 3	Internal Clock
0	0	100Hz
0	1	200Hz
1	0	500Hz
1	1	1KHz

SCAN T0-T1 Select scan rate of digital bits determined by the following table:

CS	r I/O	Scan Rate
Bit 6	Bit 5	Internal Clock
0	0	1KHz
0	1	10KHz
1	0	100KHz
1	1	1MHz

Hardware/Software can inhibit updates to FIFO memory: ' 00' = Front Panel Control The Lemo connector on the front panel when switched on can stop any further updates to the FIFO memory and stop change of state interrupts being generated. Switching off allows the change of states detected on the inputs to be continually updated and saved again. ' 01' = Software controlled
When SH0-1 set to '01' any changes of states detected on the inputs are not saved to memory, stops any further writes. Left with last value before software inhibit.
When others '10' & '11' Keeps Updating When set to others '10' and '11' the unit keeps updating the FIFO memory on a change of state detected on the inputs, regardless of Lemo setting.
Enable digital lines: '0' = all inputs; '1' = all outputs;
This control bit when set high will invert the input signals sense, i.e. a high input will be reported low and vice versa. Basically when the INV INPUT bit is set, the logic is inverted. When low the invert function is disabled.
Only operational in output mode. When set high will set the digital outputs low for 100us and then return them to their original state, see <u>LAMP Operation</u> .
This bit signifies a change of state which causes an interrupt to be generated. A '0' needs to be written to this bit to clear the interrupt.

At switch on the default value for this register is 0Hex

3.2.1 LAMP RST Operation

On the 9308 isolated digital output driver board, there is an Intelligent Protected Switch; type number IPS041L. This part protects itself against over-current and over-temperature by shutting itself down. Unfortunately, it does not try to switch itself on again until the input signal is taken low and then back high again.

Thus one is faced with the possibility of a user changing a bulb on an instrument attached to one of these devices putting a new bulb in (shorting the contacts as he/she does so) and then the new bulb seeming not to work.

The proposed way round this is to use the 'lamp reset' function to perform this simple task of resetting the switch device:

In the CSR for each 32-bit digital IO area, there is a control bit called 'lamp reset', this will automatically reset the outputs of the 9308 driver. This only performs the function when this 32-bit section is in output mode and then only when the data register gets updated. At this time, it forces a change of state onto the outputs such that any bit which was at a '1' will change to '0' for 100 microseconds +/- 20 microseconds before going back to the requested state. This will produce the desired effect and reset the IPS driver as needed.

It is proposed that the operator, on changing a light bulb, be encouraged to press the lamp test button near the affected unit to make sure all is OK, thus invoking the above process.

3.3 Digital Input Interrupt Mask Register IMR (Read/Write)

Address:	Base + 0x0008 = Group A I/O = 1 to 32
Address:	Base + 0x0108 = Group B I/O = 33 to 64
Address:	Base + 0x0208 = Group C I/O = 65 to 96
Address:	Base + 0x0308 = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
M15	M14	M13	M12	M11	M10	M9	M8	M7	M6	M5	M4	M3	M2	M1	MO
_															
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16

M31 M30 M29 M28 M27 M26 M25 M24 M23 M22 M21 M20 M19 M18 M17 M16

The mask register only acts on input signals. Writing a '1' to a bit will allow a change-of-state on the corresponding input to generate an interrupt. Any output bits that have a corresponding '0' in this register will not generate interrupts.

At switch on the default value is 0Hex

3.4 De-bounce Bit Register (Read/Write)

Address:	Base + $0x000C$ = Group A I/O = 1 to 32
Address:	Base + 0x010C = Group B I/O = 33 to 64
Address:	Base + 0x020C = Group C I/O = 65 to 96
Address:	Base + 0x030C = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
-															
D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16

The de-bounce register only applies to bit selected as inputs. A '1' written to a bit position causes that input to be de-bounced at the selected common clock rate

At switch on the default value is 0Hex

3.5 Pulse Select Register PSR IP(Read/Write)

Address:	Base + 0x0010 = Group A I/O = 1 to 32
Address:	Base + 0x0110 = Group B I/O = 33 to 64
Address:	Base + 0x0210 = Group C I/O = 65 to 96
Address:	Base + 0x0310 = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
PS15	PS14	PS13	PS12	PS11	PS10	PS9	PS8	PS7	PS6	PS5	PS4	PS3	PS2	PS1	PS0

D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
PS31	PS30	PS29	PS28	PS27	PS26	PS25	PS24	PS23	PS22	PS21	PS20	PS19	PS18	PS17	PS16

The Pulse Select register only applies to bit selected as outputs. Writing a '1' to a bit makes the corresponding output a pulsed type. In this case, writing a '1' to a bit in the LKC/Data register will cause the corresponding output to produce a pulse of a width controlled by the Pulse Parameter Register. At the end of the pulse, the corresponding bit in the LKC/Data register will be cleared.

At switch on the default value is 0Hex

3.6 Pulse Parameter Register PPR IP (Read/Write)

Address:	Base + 0x0014 = Group A I/O = 1 to 32
Address:	Base + 0x0114 = Group B I/O = 33 to 64
Address:	Base + 0x0214 = Group C I/O = 65 to 96
Address:	Base + 0x0314 = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
PP15	PP14	PP13	PP12	PP11	PP10	PP9	PP8	PP7	PP6	PP5	PP4	PP3	PP2	PP1	PP0

D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
PP31	PP30	PP29	PP28	PP27	PP26	PP25	PP24	PP23	PP22	PP21	PP20	PP19	PP18	PP17	PP16

The pulse parameters register controls the width of the output pulse produced when the corresponding bit is written as a '1' in the data register. The function of the bits is as follows:

Pulse Pa	aramete	er Regis	ter Set	tings	
Pulse Width	PP4	PP3	PP2	PP1	PP0
1 msec	0	0	0	0	0
10 msec	0	0	0	0	1
100 msec	0	0	0	1	0
1 second	0	0	0	1	1
2 seconds	0	0	1	0	0
5 seconds	0	0	1	0	1
10 seconds	0	0	1	1	0
20 seconds	0	0	1	1	1
50 seconds	0	1	0	0	0
100 secs	0	1	0	0	1

All other bits have no effect on the pulse frequency setting, and the pulse parameter register will stay at the previous valid setting.

3.7 FIFO Register FIFO IP (Read/Write)

Address:	Base + 0x0018 = Group A I/O = 1 to 32
Address:	Base + 0x0118 = Group B I/O = 33 to 64
Address:	Base + 0x0218 = Group C I/O = 65 to 96
Address:	Base + 0x0318 = Group D I/O = 97 to 128

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
NU	-	HALF FULL	EMPTY	EN FIFO	CLR FIFO										

There are 4 internal FIFOs, one for each group of channels. The FIFO is 32bits wide and 64 locations deep. The last known value before the change of change interrupt has been detected is stored in the FIFO.

CLR_FIFO	*Clears the internal FIFO, active high
EN_FIFO	Enable the FIFO, Active high. When a change of state occurs and the FIFO has
	been enabled the result will be stored into the FIFO, if not already full.
EMPTY	Indicates when the FIFO is empty, active high (Read Only)
HALF FULL	Indicates when the FIFO is half full, active high. (Read Only).
FULL	Indicates when the FIFO is full, active high. (Read Only).
NU-Not Used	

At switch on the default value is 0004Hex (indicating the FIFO is empty)

*Please note, when the FIFO is cleared (03Hex written to the FIFO control register the contents are emptied and all of the flags are set high (Empty, Half-full & Full are all set high) until the 'CLR_FIFO' bit is taken low again. If the FIFO register is then written to with just the enable set (02Hex) the returned value is 06Hex, empty and enabled.

3.7.1 Example of FIFO contents

Shown below is an example of the FIFO contents. Dependent upon the number of change of states and hence interrupts generated, will determine the number of locations filled in the FIFO memory.

Sample	FIFO	FIFO
Info	Location	Contents
First sample	1	32 bit, sample 1 Change of state input
2 nd	2	32 bit, sample 2 Change of state input
-3 rd	3	32 bit, sample 3 Change of state input
-4 th	4	32 bit, sample 4 Change of state input
-5 th	5	32 bit, sample 5 Change of state input
-6 th	6	32 bit, sample 6 Change of state input
-7 th	7	32 bit, sample 7 Change of state input
Previous sample	8	32 bit, sample 8 Change of state input
Last sample	9	32 bit, sample 9 Change of state input
etc	etc	etc

3.8 FIFO Memory (Read)

Address:	Base + 0x001C = Group A FIFO
Address:	Base + 0x011C = Group B FIFO
Address:	Base + 0x021C = Group C FIFO
Address:	Base + 0x031C = Group D FIFO

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
FF15 I	FF14	FF13	FF12	FF11	FF10	FF9	FF8	FF7	FF6	FF5	FF4	FF3	FF2	FF1	FF0

D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
FF31	FF30	FF29	FF28	FF27	FF26	FF25	FF24	FF23	FF22	FF21	FF20	FF19	FF18	FF17	FF16

Dependent upon which internal FIFO has been selected; group A-D, the last change of state I/Os stored will be shown on the data bus, if the FIFO is not full.

At switch on the default value is 0Hex

3.9 Interrupt Request Vector IRV IP (Read/Write)

Address:	Base + 0x0020 = Group A I/O = 1 to 32
Address:	Base + 0x0120 = Group B I/O = 33 to 64
Address:	Base + 0x0220 = Group C I/O = 65 to 96
Address:	Base + 0x0320 = Group D I/O = 97 to 128

Sets the interrupt request vector address for the routine to jump to when an interrupt occurs

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
V15	V14	V13	V12	V11	V10	V09	V08	V07	V06	V05	V04	V03	V02	V01	V00

At switch on the default value is 0Hex

3.10 Control & Status Register (VME)

Control (Write / Read) Address: Base + 0x0400

D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
NU	NU	NU	NU	GpD INT	GpC INT	GpB INT	GpA INT	NU	NU	NU	INTSEL2	INTSEL1	INTSEL0	INTEN	RST

RST INTEN INTSEL0	Writing '1' to this bit clears the control and status VME register to zero. This enables interrupts from IO change of state interrupts. Active high Select VME interrupt line – 3-bit code: '000' not allowed.
INTSEL1	Select VME interrupt line
INTSEL2	Select VME interrupt line
Gp A INT	Enable Group A interrupt line select.
Gp B INT	Enable Group B interrupt line select.
Gp C INT	Enable Group C interrupt line select.
Gp D INT	Enable Group D interrupt line select.

NU-Not Used

If the Group has been enabled and an interrupt (change of state) has been generated, the interrupt vector priority is relayed, if the (INTEN) interrupt enable has also been set.

At switch on the default value is 0Hex

3.11 VME System Reset

A VME system reset on pin JC1 pin 12, active low, will clear the following registers:

- CSR Registers A, B, C & D
- Interrupt Mask Registers A, B, C & D
- De-bounce Registers A, B, C & D
- Pulse Select Registers A, B, C & D
- Pulse Parameter Registers A, B, C & D
- Interrupt Requester Vector Registers A, B, C & D
- Last Known Change Registers A, B, C & D
- FIFO Register A, B, C & D
- FIFO Memory A, B, C & D
- VME CSR Register

4. 32Bit/16Bit data transfer VME

The majority of the registers on the 8005 are 32bits wide and therefore the read/write access is designed for 32bit data transfer. However, the VME 64 specification details that data accesses can be either 32bits or 16bits wide. The 8005 can read and write to the 32bit registers with 16bit wide data transfers by implementing 2 accesses and driving the address line A01 high and low, see the following tables from the VME specification.

Byte Locations Accessed	Data D24-D31	Data D16-D23	Data D08-D15	Data D00-D07
BYTE(0-1)			BYTE(0)	BYTE(1)
16bit access			DITE(0)	D11E(1)
BYTE(2-3)			BYTE(2)	BYTE(3)
16bit access			DTTE(2)	DTIE(3)
BYTE(0-3)	BYTE(0)	BYTE(1)	BYTE(2)	BYTE(3)
32bit access	BTIE(0)		DTTE(Z)	DTTE(3)

Use of the Data Lines to Access Byte Locations

*From the VME Specification

To perform this operation the following control lines are required:-

Byte Locations Selected	DS1*	DS0*	A01	LWORD*
BYTE(0-1) Double byte access (16bits)	LOW	LOW	LOW	HIGH
BYTE(2-3) Double byte access (16bits)	LOW	LOW	HIGH	HIGH
BYTE(0-3) Quad Byte access (32bits)	LOW	LOW	LOW	LOW

Use of DS0*, DS1*, A01, and LWORD* to Select Byte Locations

*From the VME Specification

4.1 Example of a 16bit Read/Write to a 32bit register

To access the 8005 registers 32bit read/write functions are performed. To write to the 'Mask Resister A' at location 8Hex for example, with data 12345678Hex, with 32bit data transfer write to location 08Hex 12345678Hex

32bit write

Address	Data D24-D31	Data D16-D23	Data D08-D15	Data D00-D07
08Hex	12	34	56	78

To read-back the data in the Mask Register A in 16bit data format 2 read accesses are required. <u>16bit read</u>

Address	Data D24-D31	Data D16-D23	Data D08-D15	Data D00-D07
08Hex (A1 Low)			12	34
0AHex (A1 High)			56	78

4.2 Example of a Read/Write to a 16bit register

The majority of the registers are 32bits wide, but then are a couple that are only16bits wide, namely the Control & Status registers (CSR), Interrupt Request Vector (IRV) and the FIFO Registers. These can be written too and read from in 32bit or 16bit transfers, but obviously the higher D31-D16 data bits are not used.

As an example of a 16bit transfer, to write to the 'CSR A' register 1234Hex, write to the offset address + 2Hex (Byte 1-2, Address A1 high)

16bit read/write

Address	Data D24-D31	Data D16-D23	Data D08-D15	Data D00-D07
06Hex (04+2Hex)			12	34

32bit read/write

Address	Data D24-D31	Data D16-D23	Data D08-D15	Data D00-D07
04Hex			12	34

5. Interrupt Process

To generate an interrupt on the DIO-8005 card a number of registers must be set:-

- 1. There are three parameters that need to be set in the Control/Status Register (VME) (Base + 0x0400).
 - Enable interrupts by setting bit 1 (INTEN) high
 - Set the interrupt level, bits 2 to 4 (INTSEL) as follows:-

Interrupt Level	INTSEL 2	INTSEL 1	INTSEL 0
None	0	0	0
IRQ 1	0	0	1
IRQ 2	0	1	0
IRQ 3	0	1	1
IRQ 4	1	0	0
IRQ 5	1	0	1
IRQ 6	1	1	0
IRQ 7	1	1	1

Interrupt Level Select

- Enable the Group interrupt line bits 8 to 11 (GpINT), by setting them high. If all of the groups A-D have been enabled and an interrupt occurs on all of the groups, Group A will be serviced first then B and so on to D. There is a priority of Group A highest to Group D lowest.
- 2. The interrupt Request Vector must be set for all 4 groups, with the address the routine will jump to when the interrupt occurs. The address vector for Bank A is stored at Base + 0x0020, Bank B at Base + 0x0120 and so on to Bank D at Base + 0x0320.
- 3. When a 'Change of State' occurs on one the input banks, the corresponding interrupt level will be set, determined by the control/status Register values.
- 4. When the interrupt handler (controller) has determined an interrupt has been generated, it will then set the IACK signal to indicate it is ready to receive the interrupt vector. This signal if fed to all of the boards in the crate and if the address A1 to A3 matches the card that caused the interrupt, then the DIO-8005 card passes the Status/ID to the handler.
- 5. Once the IACK signal has been received by the DIO-8005 card and it matches the address A1-A3 and acknowledged. Only then does the interrupt enable (INTEN) bit 1 of the Control/Status Register (VME) is cleared, to indicate the interrupt has been serviced and allow another interrupt to be generated. If the A1-A3 does not match the card then is passes on the IACK signal to the next card in the crate and the INTEN bit remains set, until its interrupt is accessed.

6. Configuration ROM

0x03 C1 Check Sum 0x07 00 Length of ID ROM MSB 0x08 02 Length of ID ROM LSB 0x0F 00 Length of ID ROM LSB Configuration ROM data access width 0x13 0x83 CSR data access width 0x17 0x83 CSR space Specification ID 0x18 0x02 VME64x-1997 Identify a Valid CR 0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID 0x27 0x00 0x27 0x03 0x33 0x80 8005 unit 0x37 0x05 0x38 0x00 0x37 0x02 PCB issue 0x47 0x02 Xilinx version 0x43 0x02 PCB issue 0x47 0x02 Xilinx version 0x47 0x02 Xilinx version 0x38 0x00 0x47 0x02 Xilinx version nos 0x4	Address Offset	Value	Definition		
0x0B 02 Length of ID ROM 0x0F 00 Length of ID ROM LSB Configuration ROM data access width 0x13 0x83 0x13 0x83			Check Sum		
0x0B 02 Length of ID ROM 0x0F 00 Length of ID ROM LSB Configuration ROM data access width 0x13 0x83 0x13 0x83		00			
0x0F00Length of ID ROM LSBConfiguration ROM data access width0x130x83CSR data access width0x170x83CSR space Specification ID0x1B0x020x1B0x020x1F0x430x230x52"R'0x270x000x280x800x270x030x280x800x270x030x280x800x270x000x280x800x270x030x280x800x470x020x330x808005 unit0x370x050x380x000x440x020x470x020x480x020x470x000x530x000x530x000x550x000x550x000x570x000x570x000x570x000x570x000x570x000x570x000x570x000x570x000x550x780x7F0x01No program, ID ROM only			Length of ID ROM		
Configuration ROM data access width 0x13 0x83 CSR data access width 0x17 0x83 CSR space Specification ID 0x1B 0x02 VME64x-1997 Identify a Valid CR 0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID 0x2F 0x00 0x2B 0x32 0x80 8005 unit 0x33 0x80 8005 unit 0x37 0x05 0x38 0x38 0x00 0x3F 0x43 0x02 PCB issue 0x47 0x02 Xilinx revision nos 0x48 0x02 Xilinx revision nos 0x48 0x02 Xilinx revision nos 0x44 0x00 Xilinx revision nos 0x53 0x00 0x57 0x58 0x00 0x57 0x55 0x00 0x55 0x55 0x00 0x55 0x57 0x00 0x55 0x57 0x00		00			
0x13 0x83 CSR data access width 0x17 0x83 CSR space Specification ID 0x1B 0x02 VME64x-1997 Identify a Valid CR 0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID 0x27 0x00 0x28 0x80 0x2F 0x03 Board ID 0x33 0x80 8005 unit 0x33 0x80 8005 unit 0x37 0x05 0x38 0x00 Ox43 0x02 PCB issue 0x43 0x02 Xilinx revision nos 0x47 0x02 Xilinx revision nos 0x44F 0x00 Xilinx revision nos 0x44F 0x00 Xilinx revision nos 0x45 0x00 Xilinx revision nos 0x57 0x00 Xilinx revision nos 0x58 0x00 Xilinx revision nos Xilinx revision nos Xilinx revision nos Xilinx revision nos Ox57 0x00 Xilinx revision nos <th colsy<="" td=""><td></td><td>guration ROM data a</td><td>-</td></th>	<td></td> <td>guration ROM data a</td> <td>-</td>		guration ROM data a	-	
0x17 0x83 CSR space Specification ID 0x1B 0x02 VME64x-1997 Identify a Valid CR 0x1F 0x43 'C' 0x23 0x52 'R' Identify a Valid CR 0x27 0x00 Identify a Valid CR Identify a Valid CR 0x27 0x00 Identify a Valid CR Identify a Valid CR 0x27 0x00 0x2F 0x00 Identify a Valid CR 0x28 0x80 0x05 Identify a Valid CR Identify a Valid CR 0x38 0x00 8005 unit Identify a Valid CR 0x37 0x03 8005 unit Identify a Valid CR 0x38 0x00 Revision ID Identify a Valid CR 0x43 0x02 Xilinx revision nos Identify a Valid CR					
CSR space Specification ID0x1B0x02VME64x-1997Identify a Valid CR0x1F0x43'C'0x230x52'R'0x230x52'R'Manufacturer's ID0x270x000x280x800x270x030x280x800x370x03Board ID0x330x808005 unit0x370x050x380x000x430x02PCB issue0x470x02Xilinx version0x480x02Xilinx revision nos0x4F0x00Xilinx revision nos0x570x000x580x000x570x000x570x000x570x000x570x000x570x000x570x000x570x000x570x000x570x000x570x01No program, ID ROM only		CSR data access	width		
0x1B 0x02 VME64x-1997 Identify a Valid CR 0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID Manufacturer's ID 0x27 0x00	0x17	0x83			
Identify a Valid CR 0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID 0x27 0x00 0x28 0x80 0x2F 0x03 Board ID 0x33 0x80 0x37 0x05 0x38 0x00 0x37 0x05 0x38 0x00 0x43 0x02 0x43 0x02 0x43 0x02 0x47 0x02 0x48 0x02 0x47 0x02 0x48 0x02 0x47 0x00 0x53 0x00 0x53 0x00 0x53 0x00 0x55 0x00 0x58 0x00 0x58 0x00 0x57 0x00 0x58 0x00 0x57 0x00 0x58 0x00 0x57 0x00 <td< td=""><td></td><td>CSR space Specifica</td><td>ation ID</td></td<>		CSR space Specifica	ation ID		
0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID Manufacturer's ID 0x27 0x00	0x1B				
0x1F 0x43 'C' 0x23 0x52 'R' Manufacturer's ID Manufacturer's ID 0x27 0x00		Identify a Valid	CR		
Manufacturer's ID 0x27 0x00 0x2B 0x80 0x2F 0x03 Board ID 0x33 0x80 0x37 0x05 0x38 0x00 0x37 0x05 0x38 0x00 0x37 0x02 0x38 0x00 0x37 0x02 0x38 0x00 0x37 0x02 0x38 0x00 0x37 0x00 0x38 0x00 0x37 0x00 0x43 0x02 0x47 0x02 0x48 0x02 0x47 0x00 0x48 0x02 0x47 0x00 0x53 0x00 0x53 0x00 0x58 0x00 0x58 0x00 0x57 0x00 0x58 0x00 0x57 0x01 0x07F 0x01	0x1F				
0x27 0x00 0x2B 0x80 0x2F 0x03 Board ID 0x33 0x80 0x37 0x05 0x38 0x00 0x37 0x05 0x38 0x00 0x37 0x02 0x38 0x00 0x37 0x02 0x38 0x00 0x37 0x02 0x43 0x02 0x47 0x02 0x48 0x02 0x47 0x00 0x48 0x02 0x47 0x00 0x53 0x00 0x53 0x00 0x57 0x00 0x58 0x00 0x58 0x00 0x57 0x00 0x57 0x00 0x58 0x00 0x57 0x00 0x57 0x00 0x57 0x00 0x57 0x00 0x57 0x0	0x23	0x52	'R'		
0x2B 0x80 0x2F 0x03 Board ID 0x33 0x80 0x37 0x05 0x3B 0x00 0x3F 0x00 0x43 0x02 0x47 0x02 0x48 0x02 0x47 0x02 0x48 0x02 0x47 0x00 0x48 0x02 0x47 0x00 0x48 0x02 0x50 Xilinx revision nos 0x47 0x00 0x53 0x00 0x53 0x00 0x57 0x00 0x58 0x00 0x57 0x00 0x57 0x00 0x55F to 0x7B Program ID code 0x7F 0x01 No program, ID ROM only		Manufacturer's	ID		
0x2F 0x03 Board ID 0x33 0x80 8005 unit 0x37 0x05 0x3B 0x00 0x3F 0x00 0x43 0x02 PCB issue 0x47 0x02 Xilinx version 0x48 0x02 Xilinx revision nos 0x4F 0x00 Xilinx revision nos 0x4F 0x00 Xilinx revision nos 0x53 0x00 0x58 0x00 0x57 0x00 0x57 0x01 No progra	0x27	0x00			
Board ID 0x33 0x80 8005 unit 0x37 0x05 0x38 0x38 0x00 0x37 0x38 0x00 0x37 0x37 0x00 0x38 0x38 0x00 0x37 0x37 0x00 0x37 0x38 0x00 0x37 0x43 0x02 PCB issue 0x47 0x02 Xilinx version 0x48 0x02 Xilinx revision nos 0x4F 0x00 Xilinx revision nos 0x4F 0x00 Xilinx revision nos 0x53 0x00 0x53 0x57 0x00 0x58 0x58 0x00 0x58 0x5F to 0x7B Image: second for future use 0x5F to 0x7B Image: second for future use 0x7F 0x01 No program, ID ROM only	0x2B	0x80			
0x33 0x80 8005 unit 0x37 0x05	0x2F	0x03			
0x37 0x05 0x3B 0x00 0x3F 0x00 Revision ID 0x43 0x02 PCB issue 0x47 0x02 Xilinx version 0x48 0x02 Xilinx revision nos 0x4F 0x00 Xilinx revision nos 0x4F 0x00 Xilinx revision nos 0x53 0x00 0x57 0x58 0x00 0x57 0x57 0x00 0x57 0x58 0x00 0x57 0x57 0x00 0x57 0x57 0x00 0x57 0x7F 0x01 No program, ID ROM only		Board ID			
0x3B0x000x3F0x00Revision ID0x430x02PCB issue0x470x02Xilinx version0x4B0x02Xilinx revision nos0x4F0x00Xilinx revision nos0x530x000x570x5B0x000x580x5F to 0x7BProgram ID code0x7F0x01No program, ID ROM only	0x33	0x80	8005 unit		
0x3F0x00Revision ID0x430x02PCB issue0x470x02Xilinx version0x4B0x02Xilinx revision nos0x4F0x00Xilinx revision nos0x530x000x570x5B0x000x580x5F to 0x7BProgram ID code0x7F0x01No program, ID ROM only	0x37	0x05			
Revision ID0x430x02PCB issue0x470x02Xilinx version0x480x02Xilinx revision nos0x4F0x00Xilinx revision nosASCII string null terminated or 0x0000000x530x000x570x000x5B0x00Reserved for future use0x5F to 0x7BProgram ID code0x7F0x01No program, ID ROM only	0x3B	0x00			
0x430x02PCB issue0x470x02Xilinx version0x4B0x02Xilinx revision nos0x4F0x00Xilinx revision nos0x4F0x00Xilinx revision nos0x530x000x530x570x000x580x000x5F to 0x7BProgram ID code0x7F0x01No program, ID ROM only	0x3F				
0x470x02Xilinx version0x4B0x02Xilinx revision nos0x4F0x00Xilinx revision nos0x4F0x00Xilinx revision nos0x530x000x530x570x000x580x00Reserved for future use0x5F to 0x7BProgram ID code0x7F0x01No program, ID ROM only					
0x4B0x02Xilinx revision nos0x4F0x00Xilinx revision nosASCII string null terminated or 0x0000000x530x000x570x000x5B0x00Reserved for future use0x5F to 0x7BProgram ID code0x7F0x010x01No program, ID ROM only					
0x4F 0x00 Xilinx revision nos ASCII string null terminated or 0x000000 0x53 0x00 0x57 0x00 0x5B 0x00 Reserved for future use 0x5F to 0x7B Program ID code 0x7F 0x01					
ASCII string null terminated or 0x000000 0x53 0x00 0x57 0x00 0x5B 0x00 Reserved for future use 0x5F to 0x7B Program ID code 0x7F 0x01 No program, ID ROM only					
0x53 0x00 0x57 0x00 0x5B 0x00 Reserved for future use 0x5F to 0x7B Program ID code 0x7F 0x01 No program, ID ROM only					
0x57 0x00 0x5B 0x00 Reserved for future use 0x5F to 0x7B Program ID code 0x7F 0x01 No program, ID ROM only			a or 0x000000		
0x5B 0x00 Reserved for future use 0x5F to 0x7B Program ID code 0x7F 0x7F 0x01					
Reserved for future use 0x5F to 0x7B Program ID code 0x7F 0x01 No program, ID ROM only					
0x5F to 0x7B Program ID code 0x7F 0x01 No program, ID ROM only	0x5B				
Program ID code 0x7F 0x01 No program, ID ROM only	OvEE to Ov7P				
0x7F 0x01 No program, ID ROM only		Program ID cov			
	∩x7F				
	07/1				
0x80	0x80				
Board Serial Number		Board Serial Nun	nber		
0xCB, 0xCF, 0xD3 0x BEG_SN MSB	0xCB, 0xCF, 0xD3				
0xD7, 0xDB, 0xDF 0x END_SN LSB					

Reading the Configuration ROM using A16 (AM29h and AM2Dh) or A24 (AM39h and AM3Dh) the address is VME base address + 0x0600h, the Configuration ROM offset.

6.1 Board Serial No.

The board serial number is set using 9 links on the PCB that can be made or broken to form a specific number. The first serial number links 8-1 are the first 8 bits stored at location DF+ 0x0600h, and the next 8 bits are from the 9th serial number link and the rest are zeros at location DB+ 0x0600h. The remainder locations 0xCB, 0xCF, 0xD3, and 0xD7 + 0x0600h are all zeros. See the following table for the jumper settings board serial number:-

Serial No Bit	Jumper Label	Comments
0	J11	Fit jumper
1	J5	links sets
2	J14	corresponding
3	J13	bit low
4	J1	
5	J15	
6	J18	
7	J17	
8	J16	

Links to set the serial No

These jumpers are factory set.

6.2 Other Jumper Settings

- J3- Not Used (Not Fitted)
- J19- Not Used (Not Fitted)
- J12- Xilinx Master/Slave Mode setting. Factory set (link made, default)

6.2.1 LI/I*, LI/O* Jumper Settings

These signals are used for live insertion, hot-swap mode. Most crates do not drive the LI/I* (Live Insertion/Input) or monitor the LI/O* (Live Insertion/Output). Therefore, for the majority of systems the following jumper links can be made. The factory setting is to disable monitoring, therefore not to fit the jumper links J20-J23. This will disconnect the LI/I* & LI/O signals to the backplane of the crate and will use an on-board pull-up to the LI/I* signal, to enable the board to operate normally. There are some crates that do require these signals but drive/monitor in different logic states, therefore, fitting the appropriate links will invert or not invert the relevant signals, see the following table:

Mode	Jumper Positions	Comments
Disable LI/I and LI/O	Do not fit J20, J21, J22 & J23	Factory Setting
signals from create		No crate driving/monitoring
Enable LI/I and LI/O	LI/I: Fit J20 (2-3), J21 (1-2)	To enable create driving/monitoring
signals from create	LI/O: Fit J22(1-2), J23 (2-3)	LI/I Active high, LI/O Active Low
No inversion		
Enable LI/I and LI/O	LI/I: Fit J20 (1-2), J21 (2-3)	Create driving/monitoring
signals from create	LI/O: Fit J22(1-2), J23 (2-3)	(with LI/I inverted)
With LI/I inverted		LI/I now Active Low, LI/O Active Low
Enable LI/I and LI/O	LI/I: Fit J20 (2-3), J21 (1-2)	Create driving/monitoring
signals from create	LI/O: Fit J22(2-3), J23 (1-2)	(with LI/O inverted)
With LI/O inverted		LI/I Active high, LI/O now Active high
Enable LI/I and LI/O	LI/I: Fit J20 (1-2), J21 (2-3)	Create driving/monitoring
signals from create	LI/O: Fit J22(2-3), J23 (1-2)	(with both LI/I & LI/O inverted)
With LI/I & LI/O inverted		LI/I now Active Low, LI/O now Active High

LI/I & LI/O Jumper Link Settings

7. ID PROM Registers (Green Spring Format)

Not implemented

Address Offset	Value	Definition	
0x101	0x49	ASCII "I"	
0x103	0x50	ASCII "P"	
0x105	0x41	ASCII "A"	
0x107	0x43	ASCII "C"	
0x109	0x80	Manufacturer's ID	
0x10B	0x83	Model Number	
0x10D	0x0x	Revision	
0x10F	0x00	Reserved	
Ox111	0x00	Driver ID, low byte	
0x113	0x00	Driver ID, high byte	
0x115	0x0C	No of bytes used	
0x117		ĆRC	

8. PRODUCT SPECIFICATIONS

Power Requirements

+5V @ 600mA typical +12V @ 30mA

+3.3V @ approx 10mA

Operating Temperature Range

0 to +45 deg Celsius ambient.

Mechanical

6U single width VME module with access to 5 row P0, P1 and P2 connectors.

I/O Mapping

VME Access A16:D32:D16 AM Codes: 29hex and 2Dhex. VME Access A24:D32 D16 AM Codes: 39hex and 3Dhex.

Configuration ROM

VME Access A24:D32 D16 AM Codes: 2F hex or29 hex or 2Dhex or 39hex or 3Dhex. VME Access A16:D32 D16 AM Codes: 29hex and 2Dhex. VME Access A24:D32 D16 AM Codes: 39hex and 3Dhex.

Front Panel Indicators and Inputs

'VME'	VME LED (green)	Illuminates for a minimum of 20msecs whenever the module is accessed via the VME bus.
'Not Configured'	CONF LED (blue)	Indicates the state of the VME module during hot swap operation.
'Change of State'	GROUP A-D 4 LED's (red)	Indicates when a Group Change of State has occurred. There are 4 in total one for each Group A-D. Indicator is set when an interrupt occurs and turned off when the interrupt has been cleared. Only valid on inputs, has a different indication when set as outputs, see 'Bank set as outputs' mode
'Bank set as outputs'	GROUP A-D 4 LED's (red)	Indicates when a group has been set as an output. Lights the 'Group LEDs' when that group is set as an output and that group is being written to, i.e. flash once when group updated and is an output. Only valid on outputs, has a different indication when set as inputs, see 'Change of State' mode.
'Scan Rate'	SCAN A-D 4 LED's (red)	Indicates when a Group is being Scanned and at what rate, only valid for inputs. There are 4 in total one for each Group A-D. The Indicator is cleared when NOT scanning and flashes at the following frequency dependant on the scan rateScan RateLED PeriodLED on Time 1 KHz1 KHz1.6 secs10ms 10 KHz10 KHz0.4 secs10ms 1 0ms 1 0MHz1 MHz0.2 secs10ms
'SP'	Spare LED	For future applications

Front Panel Connectors

Inhibit

Single TTL input. This input has a 10K pull-up resistor to 5Volt supply. Connector type: LEMO '00'

9. VME Connectors

Group A	Pin	Group B	Pin	Group C	Pin	Group D	Pin
SCA_0	P2/A6	SCB_0	P2/D4	SCC_0	P0/A11	SCD_0	P0/A1
SCA_1	P2/C6	SCB_1	P2/Z5	SCC_1	P0/B11	SCD_1	P0/B1
SCA_2	P2/A7	SCB_2	P2/D5	SCC_2	P0/C11	SCD_2	P0/C1
SCA_3	P2/C7	SCB_3	P2/D6	SCC_3	P0/D11	SCD_3	P0/D1
SCA_4	P2/A8	SCB_4	P2/Z7	SCC_4	P0/E11	SCD_4	P0/E1
SCA_5	P2/C8	SCB_5	P2/D7	SCC_5	P0/A12	SCD_5	P0/A2
SCA_6	P2/A9	SCB_6	P2/D8	SCC_6	P0/B12	SCD_6	P0/B2
SCA_7	P2/C9	SCB_7	P2/Z9	SCC_7	P0/C12	SCD_7	P0/C2
SCA_8	P2/A10	SCB_8	P2/D9	SCC_8	P0/D12	SCD_8	P0/D2
SCA_9	P2/C10	SCB_9	P2/D10	SCC_9	P0/E12	SCD_9	P0/E2
SCA_10	P2/A11	SCB_10	P2/Z11	SCC_10	P0/A13	SCD_10	P0/A3
SCA_11	P2/C11	SCB_11	P2/D11	SCC_11	P0/B13	SCD_11	P0/B3
SCA_12	P2/A12	SCB_12	P2/D12	SCC_12	P0/C13	SCD 12	P0/C3
SCA 13	P2/C12	SCB 13	P2/Z13	SCC 13	P0/D13	SCD 13	P0/D3
SCA 14	P2/A13	SCB 14	P2/D13	SCC_14	P0/E13	SCD 14	P0/E3
SCA_15	P2/C13	SCB_15	P2/D14	SCC_15	P0/A14	SCD_15	P0/A4
SCA_16	P2/A14	SCB_16	P2/Z15	SCC_16	P0/B14	SCD_16	P0/B4
SCA 17	P2/C14	SCB_17	P2/D15	SCC_17	P0/C14	SCD 17	P0/C4
SCA_18	P2/A15	SCB_18	P2/D16	SCC_18	P0/D14	SCD_18	P0/D4
SCA_19	P2/C15	SCB_19	P2/Z17	SCC_19	P0/E14	SCD_19	P0/E4
SCA_20	P2/A16	SCB_20	P2/D17	SCC_20	P0/A15	SCD_20	P0/A5
SCA_21	P2/C16	SCB_21	P2/D18	SCC_21	P0/B15	SCD_21	P0/B5
SCA_22	P2/A17	SCB_22	P2/Z19	SCC_22	P0/C15	SCD 22	P0/C5
SCA_23	P2/C17	SCB_23	P2/D19	SCC_23	P0/D15	SCD 23	P0/D5
SCA 24	P2/A18	SCB_24	P2/D20	SCC_24	P0/E15	SCD 24	P0/E5
SCA 25	P2/C18	SCB 25	P2/Z21	SCC_25	P0/A16	SCD 25	P0/A6
SCA_26	P2/A19	SCB_26	P2/D21	SCC_26	P0/B16	SCD_26	P0/B6
SCA_27	P2/C19	SCB_27	P2/D22	SCC_27	P0/C16	SCD_27	P0/C6
SCA_28	P2/A20	SCB_28	P2/Z23	SCC_28	P0/D16	SCD_28	P0/D6
SCA_29	P2/C20	SCB_29	P2/D23	SCC_29	P0/E16	SCD 29	P0/E6
SCA_30	P2/A21	SCB_30	P2/D24	SCC_30	P0/A17	SCD 30	P0/A7
SCA_31	P2/C21	SCB_31	P2/Z25	SCC_31	P0/B17	SCD 31	P0/B7
SCA_ST0	P2/A22	SCB_ST0	P2/D25	SCC_ST0	P0/C17	SCD_ST0	P0/C7
SCA_ST1	P2/C22	SCB_ST1	P2/D26	SCC_ST1	P0/D17	SCD ST1	P0/D7
GND	P2/A23	GND	P2/Z27	GND	P0/E17	GND	P0/E7
GND	P2/C23	GND	P2/D27	GND	P0/A18	GND	P0/A8
GND	P2/A24	GND	P2/D28	GND	P0/B18	GND	P0/B8
GND	P2/C24	GND	P2/Z29	GND	P0/C18	GND	P0/C8
GND	P2/A25	GND	P2/D29	GND	P0/D18	GND	P0/D8
GND	P2/C25	GND	P2/D30	GND	P0/E18	GND	P0/E8
GND	P2/A26	GND	P2/A1	GND	P0/A19	GND	P0/A9
GND	P2/C26	GND	P2/C1	GND	P0/B19	GND	P0/B9
GND	P2/A27	GND	P2/A2	GND	P0/C19	GND	P0/C9
GND	P2/C27	GND	P2/C2	GND	P0/D19	GND	P0/D9
GND	P2/A28	GND	P2/A3	GND	P0/E19	GND	P0/E9
GND	P2/C28	GND	P2/C3	GND	P2/Z1	GND	P0/A10
GND	P2/A29	GND	P2/A4	GND	P2/D1	GND	P0/B10
GND	P2/C29	GND	P2/C4	GND	P2/D2	GND	P0/C10
GND	P2/A30	GND	P2/A5	GND	P2/Z3	GND	P0/D10
GND	P2/C30	GND	P2/C5	GND	P2/D3	GND	P0/E10

10. Example Code

The following codes are extracts from our device driver and are provided as sample illustrations only.

10.1 Quick Addressing Test

Introduction

The below example is a quick and easy test particularly useful for proving your address decoding, especially as it requires NO additional hardware.

The most significant bit of each group's CSR is the COS (Change of State) Bit. It is updated by the interrupt routine and can be used monitor and clear interrupts, but additionally, and particularly useful in this case, is its state is used to drive the corresponding Group LED on the Front Panel.

Since the CSR is also an I/O mapped register it can be simply written to, which effectively allows software control of the front panel GROUP LEDs.

The below VxWorks code assumes "carbase" has the 8005 Card under test base address in it. It then simply illuminates each GROUP LED in turn A to D.

Example Code (VxWorks)...

unsigned int *write_value;

/* Set CSR Write Value to set COS Bit and Light Corresponding LED */ *write_value = 0x00008000;

/* Write Group A CSR and Light its LED */ vxMemProbe((char*)(carbase + 0x0004), WRITE ,sizeof(longword), (char*)(write_value));

/* Write Group B CSR and Light its LED */ vxMemProbe((char*)(carbase + 0x0104), WRITE ,sizeof(longword), (char*)(write_value));

/* Write Group C CSR and Light its LED */ vxMemProbe((char*)(carbase + 0x0204), WRITE ,sizeof(longword), (char*)(write_value));

/* Write Group D CSR and Light its LED */ vxMemProbe((char*)(carbase + 0x0304), WRITE ,sizeof(longword), (char*)(write_value));

10.2 Simple Digital Input Reading.

Set Up

To obtain Digital Input States straight from the LKC (Last Known Change) registers, the below setup is the minimum required for any of the 8005. The setup steps required are...

- 1. Set the Control Status Register (CSR) for Input and Scanning Enabled.
- 2. Read the Last Known Change (LKC) Register.

Example Code (VxWorks)...

/* Update CSR Write Value as "All Inputs with Scanning Enable". Everything Else Default */ *write_value = 0x00000001;

/* Write to Group B to set up all bits in the Group as Inputs */ vxMemProbe((char*)(carbase + 0x0104), WRITE ,sizeof(longword), (char*)(write_value));

/* Read Group B */ vxMemProbe((char*)(carbase + 0x0100), READ ,sizeof(unsigned int), (char*)(write_value));

/* Display Group B Input Read */
printf("Group B Inputs Read As - 0x%08X\n", *write_value);

10.3 Simple Digital Output Driving.

Set Up

To drive a Groups bits as Digital Outputs straight from the LKC (Last Known Change) registers, the below setup is the minimum required for any of the 8005. The setup steps required are...

- 1. Set the Control Status Register (CSR) for Output.
- 2. Write the Last Known Change (LKC) Register.

Example Code (VxWorks)...

/* Update CSR Write Value as "All Outputs". Everything Else Default Values */ *write_value = 0x00000400;

/* Write to Group A to set up all bits in the Group as Outputs */ vxMemProbe((char*)(carbase + 0x0004), WRITE ,sizeof(longword), (char*)(write_value));

```
/* Write Test Pattern to Group A */

*write_value = 0x5555555;

vxMemProbe((char*)(carbase + 0x0000), WRITE ,sizeof(longword), (char*)(write_value));
```


10.4 Reading the FIFO.

Set Up

The FIFO is simply just a history of changes of the input (LKC Register), it can additionally, via the Mask Register, monitor a restricted set of bits and only log the LKC state into the FIFO if those bits selected bits change.

To use the internal FIFO instead or indeed as well (you can read the LKC directly whilst the FIFO is updating and still obtain valid data), is a case of enabling the FIFO and setting a mask of which bits to monitor for state change.

Example Code (VxWorks)...

/* Enable FIFO Anyway - Assuming carbase equals the card base address */
*write_value = 0x00000002;
vxMemProbe((char*)(carbase + 0x0018), WRITE ,sizeof(longword), (char*)(write_value));
/* Enable all Input Bits to Interrupt */
*write_value = 0xFFFFFFF;
vxMemProbe((char*)(carbase + 0x0008), WRITE ,sizeof(longword), (char*)(write_value));

Reading Input Values from the FIFO

The FIFO can be monitored by simply checking the FIFO Control Register Full or Half Full Flags. When the FIFO Half Full / Full bit is set simply read the FIFO Read Register the required number of times.

Example Code (VxWorks)...

```
/* Assuming carbase equals the card base address */
/* Read FIFO Control Register */
vxMemProbe((char*)(carbase + 0x0018), READ ,sizeof(unsigned short), (char*)(read_value));
```

```
/* If FIFO Full – Just Check the FIFO Full Bit from the FIFO Control Register */
if (*read_value & 0x0010)
{
    /* Read All 64 Entries from the FIFO Read Register now its Full */
    for (sReadCount = 0; sReadCount < 64; sReadCount++)
    {
        vxMemProbe((char*)(carbase + 0x001C), READ ,sizeof(unsigned short),(char*)(read_value));
        *(val++) = *read_value;
    }
}</pre>
```

10.5 Interrupts

As stated earlier the FIFO can be monitored by simply checking the FIFO Control Register Full Flags, this is a very reliable (no chance of missing an interrupt etc) but wasteful methodology. By far the most efficient method is using the interrupts, especially as the interrupts are set on a bit by bit basis. Therefore it is possible to interrupt on just a single bit change, any group of bits changes or all bits changes if required. This allows fine tuning of what to watch reducing the data recorded into the FIFO and time spent processing the interrupts.

Set Up

}

To set up for Interrupt processing is the same as for just the FIFO from the 8005 point of view, you just need to additionally setup your operating systems interrupt processing (interrupt service routine).

Example Code (VxWorks)...

/* Enable FIFO Anyway - Assuming carbase equals the card base address */ *write_value = 0x00000002; vxMemProbe((char*)(carbase + 0x0018), WRITE ,sizeof(longword), (char*)(write_value)); /* Allow Only 4 LSB (Bottom) Input Bits to Interrupt */ *write_value = 0x0000000F; vxMemProbe((char*)(carbase + 0x0008), WRITE ,sizeof(longword), (char*)(write_value));

Example Code (VxWorks)...

```
/* Work out Cards Base Address */
carbase = card->carbase + (card_found * 0x0100);
```

```
/* Read Control/Status Register for Group A */
vxMemProbe((char*)(carbase + 0x0004), READ ,sizeof(unsigned short), (char*)(read_value));
```

```
/* If CSR indicates change of state */

if (*read_value & 0x8000)

{

    /* Clear Interrupt - By Clearing COS bit in CSR Only */

    *read_value &= 0x7FFF;

    vxMemProbe((char*)(carbase + 0x0004), WRITE ,sizeof(unsigned short), (char*)(read_value));

    /* Read FIFO Control Register */

    vxMemProbe((char*)(carbase + 0x0018), READ ,sizeof(unsigned short), (char*)(read_value));

    /* If FIFO Full */

    if (*read_value & 0x0010)

    {

        /* Empty FIFO and Save – See "Reading the FIFO" Example Earlier */

        /* or Set a Flag to empty FIFO in a separate Task */

    }
```


11. EPICS Driver

11.1 EPICS Driver Introduction

Hytec Electronics Ltd provide an EPICS / VxWorks based Driver for the 8005. The 8005 has very similar features and similar register structure to the Hytec 8505 16 bit Digital Input / Output IP Card.

To ease the transition for users familiar with the 8505, the 8005 EPICS driver acts as though it is effectively 8 x 8505 Cards on a single carrier. The format of the various configuration and access functions remains unchanged so that the various device layers and start up scripts need very little change. In most cases just changing 8505 to 8005. The only slightly unusual action is the fact that the I/O is configured in blocks of 32 bits (i.e. as though its 2 x 8505 cards a once). An extract from an example script is shown below to help clarify these differences....

```
#----- Configure the Hy8005 Cards ------
#
# int cardNum
                  - card number as used in INP fields
# int vmeslotnum - the VME slot number of the board
# int vectorNum - interrupt vector number. If 0 no interrupts
#
   int itrLevel - board's interrupt level
# int HSintnumi - interrupt vec. number for hotswap
#
# Setup 8005 Board Itself
Hy8005Configure(50,5,70,1,0)
#----- Configure the Hy8505 Cards ------
#
#
   cardnum - EPICS card number (DLS = VME slot * 10 + IP slot)
   carrier - carrier number returned by ipacEXTAddCarrier
#
#
            - ipslot 0-3 | A-D (i.e. which SCSI)
   ipslot
   debounce - debounce rate
#
                                 0 = disable.
#
                        1 = 100Hz,
#
                       2 = 200Hz,
#
                       3 = 500Hz,
#
                       4 = 1 \text{kHz}
#
#
             - pulse width
   pwidth
                              0 = 1 \, \text{msec},
#
                        1 = 10 msec.
#
                       2 = 100 msec,
#
                       3 = 1 sec...
#
#
             -input scan rate 0 = 1 \text{ kHz},
   scan
#
                        1 = 10 \text{kHz}.
#
                       2 = 100 \text{kHz},
#
                       3 = 1 MHz
         0 = AII Inputs,
#
   dir
#
           1 - 3 = All Outputs
#
#
   intr interrupt vector
#
#
   clock src clock src 0 = internal, 1 = external
                                         Page 27 of 28
```


Input Output Defines IpIp = 0 OpOp = 3

Identical Format to Hy8505Configure() but does two "cards" at once
When You Configure Card N you automatically configure Card N+1 identically.
no, ip, slot, d, p, s, dir, int, clk
Configure Card 51 and 52 as Outputs
Hy8005IOConfigure(51, 50, A, 0, 0, 0, 0, 0pOp, 0, 0)
Configure Card 53 and 54 as Inputs
Hy8005IOConfigure(53, 50, B, 3, 3, 0, IpIp, 70, 0)

#debmask select input bits to debounce #pulsemask select bits to pulse on output #intmask select bits to generate interrupts

Identical Format to Hy8505ExtraConfig()
card dmask pmask imask
Hy8005ExtraConfig(53, 0xffff, 0x0000, 0xffff)
Hy8005ExtraConfig(54, 0xffff, 0x0000, 0xffff)

#-----Load the Hy8005 Drivers------cd hy8005topbin

ld <devHy8005.0 ld <test8005.0

cd hy8005db dbLoadDatabase("Hy8005.dbd") dbLoadDatabase("Hy8005-OO.db", 0, "device=Hy8005")

dbLoadDatabase("Hy8005-II-bi.db", 0, "device=Hy8005") dbLoadDatabase("Hy8005-II-mbbi.db", 0, "device=Hy8005") dbLoadDatabase("Hy8005-wf.db", 0, "device=Hy8005")

#---finished configuration, start IOC iocInit