

NEWWOOD SOLUTIONS Ltd
Derby Office: 15 Kings Croft, Allestree, Derby, DE22 2FP.
Tel +44 (0)1332 721326

Reading Office: 13 Highfield Road, Tilehurst, Reading RG31 6YR.
Tel +44 (0) 118 9012298

Email: sales@newwoodsolutions.co.uk Web: www.newwoodsolutions.co.uk

 IOC9010/UTM/2.0 9010 IOC User Manual
 Page 1 of 63

9010 IOC User Manual
1U Rack Mounted Input Output Controller

6 Industry Pack and 1 PMC Carrier

Document Reference: IOC9010/UM/2.3

Issue: Version 2.3

Original authors: D. Nineham, P. Marshall

Update authors: G. Cross, J. Chen. M. Newman

Date: November 2017

Issuing Organisation : Hytec Electronics Ltd

Classification : Unclassified

mailto:sales@newwoodsolutions.co.uk

 IOC9010/PS/2.3

Page 2

 IOC9010/PS/2.3

Page 3

Distribution List

COPY REGISTERED HOLDER
MASTER Newwood Solutions Ltd

Version control

CRITICAL APPLICATIONS DISCLAIMER
THIS PRODUCT FROM NEWWOOD SOLUTIONS LTD USES COMPONENTS THAT ARE NOT DESIGNED
OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL
DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR
ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL
APPLICATIONS”).
FURTHERMORE, SOME COMPONENTS USED IN THIS NEWWOOD SOLUTIONS LTD PRODUCTS ARE
NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE AND A
WARNING SIGNAL UPON FAILURE TO THE OPERATOR.
THE CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF NEWWOOD SOLUTIONS
LTD PRODUCT IN CRITICAL APPLICATIONS.

VERSION DATE Description Author
Draft Oct 2006 Original draft sent for approval D Nineham
V1.0 Nov 2006 Approved version D Nineham
V1.1 Jan 2007 Corrections and additions D Nineham
V1.2 May 2009 Further corrections P Marshall
V2.0 Mar 2014 Revised and updated G Cross/J Chen/M Newman

V2.3 28/11/17 Change from Hytec to Newwood
Solutions for contact details M Newman

 IOC9010/PS/2.3

Page 4

CONTENTS

1. INTRODUCTION ... 6

1.1 9010 IOC FRONT PANEL .. 7
1.2 9010 IOC REAR PANEL .. 8

2. OPERATING MODES ... 9

3. THE PCI BUS REGISTER INTERFACE .. 10

4. PRODUCT SPECIFICATIONS .. 10

5. APPLICATION REGISTERS ... 11

CARRIER BOARD CONFIG AND SWITCHES REGISTER IMR IP ADDRESS 2 (READ ONLY) 11
INTS LO. REGISTER ADDRESS 8 (READ ONLY) ... 12
INTS HI REGISTER ADDRESS A (READ ONLY) .. 12
IP CLOCK REGISTER ADDRESS 10 (READ/WRITE) ... 13
FANS_1_2 REGISTER ADDRESS 12 (READ ONLY) .. 13
FANS_3_4 REGISTER ADDRESS 14 (READ ONLY) .. 13
FANS_5_6 REGISTER ADDRESS 16 (READ ONLY) .. 13
FAN_CONT REGISTER ADDRESS 18 (READ/WRITE ONLY) .. 14
TEMP_FLAG REGISTER ADDRESS 1A (READ ONLY) ... 15
CONFIG_2 REGISTER ADDRESS 1C (READ ONLY) ... 15

6. ID PROM ... 17

7. I/O CONNECTIONS .. 17

8. PHYSICAL HARDWARE CONFIGURATION (JUMPERS, POTS ETC) 18

APPENDIX A .. 20

Guide to Installing Linux on the 9010 IOC Blade .. 20

APPENDIX B .. 21

Guide to Producing Stand Alone Auto Booting 9010 IOC Blade ... 21
Graphical Version ... 21
Command Line Version ... 22

APPENDIX C .. 23

Guide to Installing EPICS on the 9010 IOC Blade... 23

APPENDIX D .. 24

Guide to Building an EPICS Example .. 24
Quick EPICS Test .. 24
Adding Device Support to an EPICS Example ... 24

APPENDIX E... 25

Guide to Installing and Running Medm .. 25

 IOC9010/PS/2.3

Page 5

Installing the Hytec IOC Blade Linux Kernel 2.6 Driver ... 26

APPENDIX F ... 27

Vsystem Support .. 27

APPENDIX G .. 29

Writing Your Own IP Card Drivers .. 29
Developing and Running Your Own IP Card Drivers .. 31

APPENDIX H .. 32

EPICS Variables Pre-Installed on IOC Blade 9010 Demo .. 32

APPENDIX I .. 34

IOC Blade 9010 API Commands .. 34

APPENDIX J ... 45

IOC Blade 9010 HTML Web Interface ... 45

APPENDIX K .. 47

IOC Blade 9010 TCP/IP Interface .. 47

INTRODUCTION ... 47

COMMAND SET .. 47

STATUS .. 47
Status Command .. 47
Status Command Response.. 47

READ COMMAND ... 48
Read Command ... 48
Read Command Response ... 48

WRITE COMMAND ... 49
Write Command ... 49
Write Command Response .. 49

APPENDIX L... 50

Producing Disk Images for the IOC Blade 9010 .. 50

APPENDIX L... 51

Idiots Guide to RTEMS ... 51
Introduction ... 51

 IOC9010/PS/2.3

Page 6

1. INTRODUCTION

The 9010 IOC is a 1U high (1.75”), 19” Rack Mounted Input / Output controller, designed to
carry up to 6 single width Industry Pack cards (IP), each with its own signal conditioning card
(SCC) slot and a single PCI Mezzanine Card (PMC) card. The CPU is an Intel ATOM 1.6GHz
processor with a PCI bus interface. The CPU has 2GB ram and a 120GB SATA hard drive. It
has VGA, keyboard, mouse and USB 2 interface connections. Each industry pack card has a
rear panel high density 50 way scsi 2 connector to connect the external I/O signals.

The IOC is designed to integrate with our existing range of 50 way scsi connected DIN rail
mounting terminal blocks.

Hytec can configure the INTEL ATOM CPU to run with Windows 7, versions of Linux and Rtems
real time executive.

The logic on the 9010 IOC motherboard includes a PLX PCI bridge chip and Spartan 2 FPGA
chip programmed to interface the Industry Pack address space to the PCI bus address space.
Additionally, support is provided for the IOC front panel 2 line character display and the various
switches.

Figure 1: IOC Blade 9010 System Block Diagram

Key:
F1 to F5 - Temperature controlled cooling fans
T1 to T5 – Temperature sensors for fan speed control

Fan speed control is managed by the on board FPGA switching the fans from off to low, medium or high
speed as the local area temperature increases. An application program interface (API) is available to
allow remote monitoring and control of fan speeds. The API also includes routines for temperature
monitoring, writing the two 40 character text lines on the front panel display and read back of the front
panel and internal switches.

F1 F2 F3

F4 F5

PC 104+

PMC

PSU

FRONT

REAR

 IOC9010/PS/2.3

Page 7

1.1 9010 IOC Front panel

The 9010 IOC front panel has the following features:

• Two aluminium carry handles. Handles to help install and remove the IOC.
• Six red IP slot activity LEDs – A, B, C, D, E, F. Each flash for approx 0.25 second when the

associated IP slot is addressed correctly.
• One red addresses LED. Flashes once for approx 0.25 second for any IP slot addressed correctly.
• One red ‘fault’ led. Flashes once for approx 0.25 second for any IP slot where the addressed

acknowledge is not detected (empty IP slot or IP card fault).
• One green DC OK led. Indicates the all the DC lines required are at OK voltage levels.
• Three push buttons (UP, OK, DOWN) that can be used by applications programs, typically to drive

a menu system in association the two line 40 character display. Can be read by the 9010 IOC API
library routines.

• Recessed RESET button. Can be used to reset the CPU when internally linked (not always linked).
• USB port. Internally connected to the PC104+ USB port. This is USB 2 with the ATOM CPU.
• Two air in-taking cooling fans with push-on filter covers. These filter covers can be removed to

clean or replace the filters.
• One rear illuminated LCD display. This is a 2 line 40 character display that can be written to by the

9010 IOC API library routines. It displays the power on self-test message by default. Should say
“Test OK”. The level of illumination can be adjusted on an internal potentiometer – VR1

 IOC9010/PS/2.3

Page 8

1.2 9010 IOC rear panel

The 9010 IOC front panel has the following features:

• One IEC switched mains connector with power on neon lamp. Will accept 110 – 230V at 50 – 60
Hz ac.

• One 2A mains fuse.
• Six off 50 way SCSI connector sockets. One socket for each internal Industry Pack card slot,

labelled A to F.
• Three air extracting cooling fans.
• One PCI Mezzanine (PMC) removable blank plate.
• Two UTP connector ports.

o UTP 1 is connected to the Ethernet port on the PC104+. The ATOM CPU sets this to a 10 /
100Mhz Ethernet connection.

o UTP-2 not normally used. UTP-2 can be configured as a second Ethernet port if the CPU
allows it or as an RS232 / RS422 port.

• Ethernet LINK established LED – yellow.
• Ethernet LINK activity LED – green.
• One combined PS2 keyboard and mouse port (requires the special Y splitter cable to give separate

mouse and keyboard connections).
• One standard 15 pin VGA socket connector
• One LEMO connector for either timing sync / inhibit inputs or watchdog outputs.

 IOC9010/PS/2.3

Page 9

2. OPERATING MODES

There are several basic operating systems / software / protocols to access hardware inpu /
output.modes that the 9010 IOC Blade will support…

Linux / EPICS

Hytec can configure and provide software drivers for all Hytec IP cards for various flavours of
Linux (RedHat, Scientific, Debian, others). Hytec also supply device and asyndriver support for
EPICS and will pre-configure the EPICS environment. This will allow EPICS users via straight
CA (Channel Access), EDM, MEDM, Control System Studio (CSS), BOY and other EPICS
utilities to access the IOC’s interfaces.

Linux or Windows / VSYSTEM (from VISTA Control Systems Inc.)

Hytec can configure the 9010 IOC with Vista Control Systems Inc’s Vsystem real time SCADA
software. This can be configure on either a Windows or Linux operating system platform. Hytec
provide device drivers and an applications API to communicate with our Industry Packs. Hytec
can also provide Vsystem readers and handlers to support the system I/O into the Vsystem
database.

RTEMS / EPICS

RTEMS is an open source real time executive offering the maximum I/O performance on our
9010 IOC. RTEMS is a similar architecture to the popular VxWorks real time system but without
the burden of license costs. RTEMS is well supported by the RTEMS community. Hytec have
built the Board Support Package (BSP) for the Intel ATOM PC104 CPU that is required to
operate RTEMS and the RTEMS support for our Industry Pack cards. The 9010 IOC Blade runs
in the same way as a VxWorks IOC would, i.e. it boots up, connects to a host and runs off a
start up script.

Windows / OPC Server

The 9010 IOC Blade also supports an OPC UA Server running on a Windows operating system.
The Industry Pack (IP) card I/Os appear as OPC tags that can be discovered by an OPC UA
client.

 IOC9010/PS/2.3

Page 10

3. The PCI bus register interface

The PLX PCI 9030 bridge device requests resources from the PC104+ processor as follows:

• An I/O area for access to the configuration registers (not used).
• A MEMORY area for access to the configuration registers (not used).
• An I/O area for access to the internal registers of the Xilinx (Carrier Board registers).
• A MEMORY area for access to the Industry Packs.

This I/O area is 64 bytes wide, organised as 32 16-bit words, starting at offset zero as follows:

Offset Name Description
0 CSR-CB Carrier board Control and Status Register.
2 CONFIG Carrier Board Switches and settings.
4 DISP_CONT Read/write access to the LCD display control register
6 DISP_DATA Read/write access to the LCD display data register
8 INTS_LO Read only access to the IP IRQ Status Register (12 bits)
A INTS_HI Read only access to the IP Error Status Register (7 bits)
C MASK_LO Read/write access to a mask register for IP IRQ sources
E MASK_HI Read/write access to a mask register for IP Error sources
10 IP_CLK Read/write access the IP CLOCK SELECT register (6 bits)
12 FAN_1_2 Read only register showing the speeds of fans 1 & 2 in RPS.
14 FAN_3_4 Read only register showing the speeds of fans 3 & 4 in RPS.
16 FAN_5_6 Read only register showing the speeds of fans 5 & 6 in RPS.
18 FAN_CONT Read/Write access to Control bits for each fan
1A TEMP_FLAG Read only access to temperature sensor output flags.
1C CONFIG_2 Read only access to the two 8-bit configuration switch packs.

4. PRODUCT SPECIFICATIONS
Size: 1U 19” Rack 400mm Deep Approx
Operating temp: 0 to 45 deg C ambient
Number of input/outputs: 6 SCSI Style Connectors providing connection to the IP Cards.
Power: +100 to 240VAC at 47-63Hz 20W Maximum Unpopulated.

 IOC9010/PS/2.3

Page 11

5. APPLICATION REGISTERS
The following is a description of the application registers that are available for low level
programming users. It should be noted that Hytec provide a device application program
interface (API) that provides higher level support to access the 9010 IOC functions. A descrition
of this API can be found in the Hytec document xxxyyyzzz.

Carrier Board Control/Status Register CSR-CB Address 0 (Read/Write)
Address: Base + 0x0

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
0 0 0 FCON 0 TP16 TP15 FAN_6 FAN_5 FAN_4 FAN_3 FAN_2 FAN_1 0 TIMO PMC

PMC a ‘1’ indicates a valid PMC card detected.
TIMO a ‘1’ indicates the last attempted access to an IP card timed out.
FAN_1-6 a ‘1’ indicates detected fan rotation (see also fan control monitoring registers).
TP15-16 from on-board test points (with pull-ups) inverted, so normally ‘0’.
FCON one writeable and readable bit to select the cooling fan control method. ‘0’ = local

automatic control, ‘1’ = remote control through the register at offset 18 HEX.

Carrier Board Config and Switches Register IMR IP Address 2 (Read Only)
Address: Base + 0x2

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
 SP_4 SP_3 SP_2 SP_1 RESET DOWN OK UP

UP a ‘1’ indicates the UP Button on the Front Panel is pressed.
OK a ‘1’ indicates the OK Button on the Front Panel is pressed.
DOWN a ‘1’ indicates the DOWN Button on the Front Panel is pressed.
RESET a ‘1’ indicates the recessed RESET Button on the Front Panel is pressed.
SP_1-4 a ‘1’ indicates the on-board switch point is closed. (4 Spare / Extra Switch Points).

DISP CONT/DATA. (Offsets 4, 6)

Registers for direct R/W access to the front panel LCD display. The Control register is at offset 4, and the
Data register at offset 6.

 IOC9010/PS/2.3

Page 12

INTS LO. Register Address 8 (Read Only)
Address: Base + 0x8

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
X X X X INT

REQ
F1

INT
REQ
F0

INT
REQ
E1

INT
REQ
E0

INT
REQ
D1

INT
REQ
D0

INT
REQ
C1

INT
REQ
C0

INT
REQ
B1

INT
REQ
B0

INT
REQ
A1

INT
REQ
A0

INT REQ A0 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack A.
INT REQ A1 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack A.
INT REQ B0 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack B.
INT REQ B1 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack B.
INT REQ C0 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack C.
INT REQ C1 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack C.
INT REQ D0 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack D.
INT REQ D1 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack D.
INT REQ E0 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack E.
INT REQ E1 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack E.
INT REQ F0 a ‘1’ indicates the Interrupt Source was Input 0 on Industry Pack F.
INT REQ F1 a ‘1’ indicates the Interrupt Source was Input 1 on Industry Pack F.

INTS HI Register Address A (Read Only)
Address: Base + 0xA

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
X X X X X X X TIMO X X ERR_ F ERR_E ERR_D ERR_C ERR_B ERR_A

ERR_A a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack A.
ERR_B a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack B.
ERR_C a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack C.
ERR_D a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack D.
ERR_E a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack E.
ERR_F a ‘1’ indicates the Interrupt Source was the Error Output From Industry Pack F.
TIMO a ‘1’ indicates the Interrupt Source was Timeout for accessing any Industry Pack.

MASK LO/HI (Offsets Ch, Eh)

Registers corresponding to Interrupt and Error flag bits in INTS LO & INTS HI above, to select which, if
any, are permitted to produce a PC104+ processor interrupt. This interrupt is presented to the PC104+
card on PCI interrupt INTA#.

 IOC9010/PS/2.3

Page 13

IP CLOCK Register Address 10 (Read/Write)
Address: Base + 0x10

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
X X X X X X X X X X CKS_

F
CKS_

E
CKS_

D
CKS_

C
CKS_

B
CKS_

A

CKS_A a ‘1’ sets the clock for Industry Pack A to 32MHz and ‘0’ sets it 8MHz.
CKS_B a ‘1’ sets the clock for Industry Pack B to 32MHz and ‘0’ sets it 8MHz.
CKS_C a ‘1’ sets the clock for Industry Pack C to 32MHz and ‘0’ sets it 8MHz.
CKS_D a ‘1’ sets the clock for Industry Pack D to 32MHz and ‘0’ sets it 8MHz.
CKS_E a ‘1’ sets the clock for Industry Pack E to 32MHz and ‘0’ sets it 8MHz.
CKS_F a ‘1’ sets the clock for Industry Pack F to 32MHz and ‘0’ sets it 8MHz.

All bits default to ‘0’ (i.e. 8Mhz) on power-up.

FANS_1_2 Register Address 12 (Read Only)
Address: Base + 0x12

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
F2_7 F2_6 F2_5 F2_4 F2_3 F2_2 F2_1 F2_0 F1_7 F1_6 F1_5 F1_4 F1_3 F1_2 F1_1 F1_0

F1_0-7 These 8 bits form a value which is Fan 1’s Speed in Revolutions per Second.
F2_0-7 These 8 bits form a value which is Fan 2’s Speed in Revolutions per Second.

FANS_3_4 Register Address 14 (Read Only)
Address: Base + 0x14

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
F4_7 F4_6 F4_5 F4_4 F4_3 F4_2 F4_1 F4_0 F3_7 F3_6 F3_5 F3_4 F3_3 F3_2 F3_1 F3_0

F3_0-7 These 8 bits form a value which is Fan 3’s Speed in Revolutions per Second.
F4_0-7 These 8 bits form a value which is Fan 4’s Speed in Revolutions per Second.

FANS_5_6 Register Address 16 (Read Only)
Address: Base + 0x16

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
F6_7 F6_6 F6_5 F6_4 F6_3 F6_2 F6_1 F6_0 F5_7 F5_6 F5_5 F5_4 F5_3 F5_2 F5_1 F5_0

F5_0-7 These 8 bits form a value which is Fan 5’s Speed in Revolutions per Second.
F6_0-7 These 8 bits form a value which is Fan 6’s Speed in Revolutions per Second.

 IOC9010/PS/2.3

Page 14

FAN_CONT Register Address 18 (Read/Write Only)
Address: Base + 0x18

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
x x x x x x F5_A F5_B F4_A F4_B F3_A F3_B F2_A F2_B F1_A F1_B

F1_A Writing a ‘1’ sets Fan 1 to Low Speed.
F1_B Writing a ‘1’ sets Fan 1 to High Speed.
F2_A Writing a ‘1’ sets Fan 2 to Low Speed.
F2_B Writing a ‘1’ sets Fan 2 to High Speed.
F3_A Writing a ‘1’ sets Fan 3 to Low Speed.
F3_B Writing a ‘1’ sets Fan 3 to High Speed.
F4_A Writing a ‘1’ sets Fan 4 to Low Speed.
F4_B Writing a ‘1’ sets Fan 4 to High Speed.
F5_A Writing a ‘1’ sets Fan 5 to Low Speed.
F5_B Writing a ‘1’ sets Fan 5 to High Speed.

Cooling Fan Control and Status Register. The unit has five cooling fans which can be controlled to be
either off, half speed or full speed. This register has ten active bits, two for each fan. The ‘A’ bit controls
the low speed option: ‘0’ = OFF; ‘1’ = ON. The ‘B’ bit controls the high speed option: ‘0’ = OFF; ‘1’ =
ON. Note that when the high speed bit is set for a fan, the low speed bit becomes ‘don’t care’. Thus bit 4,
F3_B controls the high speed option of fan number 3. This register is controlled by the FAN MODE bit of
the CSR_CB; when this bit is zero, fan control is automatic, based on the signals from the temperature
sensors, and reading this register will show how the fans are being operated. Writing to this register in
this mode has no effect. When the FAN MODE bit in CSR_CB is written as ‘1’, this register is used to
control the fans and will read back what is written. However, when in this mode, if any of the temperature
sensors indicates that the unit is overheating, remote mode is overridden and local automatic control
resumes.

 IOC9010/PS/2.3

Page 15

TEMP_FLAG Register Address 1A (Read Only)
Address: Base + 0x1A

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
x TE_

HI
TE_
MD

TE_
LO

TD_
HI

TD_
MD

TD_
LO

TC_
HI

TC_
MD

TC_
LO

TB_
HI

TB_
MD

TB_
LO

TA_
HI

TA_
MD

TA_
LO

TA_LO a ‘1’ indicates Temperature Sensor A is above low temp setting (e.g. 20ºC).
TA_MD a ‘1’ indicates Temperature Sensor A is above medium temp setting (e.g. 30ºC).
TA_HI a ‘1’ indicates Temperature Sensor A is above high temp setting (e.g. 40ºC).
TB_LO a ‘1’ indicates Temperature Sensor B is above low temp setting (e.g. 20ºC).
TB_MD a ‘1’ indicates Temperature Sensor B is above medium temp setting (e.g. 30ºC).
TB_HI a ‘1’ indicates Temperature Sensor B is above high temp setting (e.g. 40ºC).
TC_LO a ‘1’ indicates Temperature Sensor C is above low temp setting (e.g. 20ºC).
TC_MD a ‘1’ indicates Temperature Sensor C is above medium temp setting (e.g. 30ºC).
TC_HI a ‘1’ indicates Temperature Sensor C is above high temp setting (e.g. 40ºC).
TD_LO a ‘1’ indicates Temperature Sensor D is above low temp setting (e.g. 20ºC).
TD_MD a ‘1’ indicates Temperature Sensor D is above medium temp setting (e.g. 30ºC).
TD_HI a ‘1’ indicates Temperature Sensor D is above high temp setting (e.g. 40ºC).
TE_LO a ‘1’ indicates Temperature Sensor E is above low temp setting (e.g. 20ºC).
TE_MD a ‘1’ indicates Temperature Sensor E is above medium temp setting (e.g. 30ºC).
TE_HI a ‘1’ indicates Temperature Sensor E is above high temp setting (e.g. 40ºC).

This register shows the state of the temperature sensors in the unit. Each of the five sensors has three
output flags for low, middle and high alarm states. The sensors are referred to as TA-TE and the flags as
LO (low) MD (mid) and HI (high).

In automatic mode (see Fan Control register above) the LO bit of each of these sensors is used to turn the
associated fan on in low speed mode. The MD bit controls the high speed mode of that fan and any of the
HI bits appearing will cause all five fans to go into high speed mode.

CONFIG_2 Register Address 1C (Read Only)
Address: Base + 0x1C

D15 D14 D13 D12 D11 D10 D09 D08 D07 D06 D05 D04 D03 D02 D01 D00
SW2/

7
SW2/

6
SW2/

5
SW2/

4
SW2/

3
SW2/

2
SW2/

1
SW2/

0
SW1/

7
SW1/

6
SW1/

5
SW1/

4
SW1/

3
SW1/

2
SW1/

1
SW1/

0

SW1/0-7 a ‘1’ indicates the relevant switch from SW1 8-way switch pack is closed / ‘ON’.
SW2/0-7 a ‘1’ indicates the relevant switch from SW2 8-way switch pack is closed / ‘ON’.

 IOC9010/PS/2.3

Page 16

INDUSTRY PACK MEMORY AREA.

This area is 16 Mbytes wide, organised as 16-bit words. All accesses to Industry Pack
resources are through this area, organised as follows:

Offset Contents
0000000h-01FFFFEh Memory area of Industry Pack A, 2Mbytes.
0200000h-03FFFFEh Memory area of Industry Pack B, 2Mbytes.
0400000h-05FFFFEh Memory area of Industry Pack C, 2Mbytes.
0600000h-07FFFFEh Memory area of Industry Pack D, 2Mbytes.
0800000h-09FFFFEh Memory area of Industry Pack E, 2Mbytes.
0A00000h-0BFFFFEh Memory area of Industry Pack F, 2Mbytes.
0C00000h-0DFFFFEh Not used (spare).
0E00000h-0E00FFEh Access to Industry Packs A-F I/O, ID and INT areas.

This last area is sub-divided as follows:

Offset Contents
000h-07Eh Industry Pack A I/O registers (64 bytes).
080h-0FEh Industry Pack A ID registers (64 bytes).
100h-17Eh Industry Pack B I/O registers (64 bytes).
180h-1FEh Industry Pack B ID registers (64 bytes).
200h-27Eh Industry Pack C I/O registers (64 bytes).
280h-2FEh Industry Pack C ID registers (64 bytes).
300h-37Eh Industry Pack D I/O registers (64 bytes).
380h-3FEh Industry Pack D ID registers (64 bytes).
400h-47Eh Industry Pack E I/O registers (64 bytes).
480h-4FEh Industry Pack E ID registers (64 bytes).
500h-57Eh Industry Pack F I/O registers (64 bytes).
580h-5FEh Industry Pack F ID registers (64 bytes).
600h-7FEh Not used
800h-8FEh Industry Pack A INT registers (128 bytes, only 2 words used).
900h-9FEh Industry Pack B INT registers (128 bytes, only 2 words used).
A00h-AFEh Industry Pack C INT registers (128 bytes, only 2 words used).
B00h-BFEh Industry Pack D INT registers (128 bytes, only 2 words used).
C00h-CFEh Industry Pack E INT registers (128 bytes, only 2 words used).
D00h-DFEh Industry Pack F INT registers (128 bytes, only 2 words used).
E00h-FFEh Not used.

Note: for this last set of registers, an access at the base address requests the vector for IP
Interrupt 0, and at base address plus two, the vector for Interrupt 1. All other addresses are not
used.

 IOC9010/PS/2.3

Page 17

6. ID PROM

Should the 9010 IOC Blade should have an ID PROM ?????

If so here’s the probable contents ????

The ID configuration information held in the PROM is as detailed below.
The byte addresses of the ID PROM are as below:-
Base+80 ASCII ‘VI’ 5649h
Base+82 ASCII ‘TA’ 5441h
Base+84 ASCII ‘4 ‘ 3420h
Base+86 Hytec ID high byte 0080h
Base+88 Hytec ID low word 0300h
Base+8A Model number 9010h
Base+8C Revision 2204h (This shows PCB Issue 2 and Xilinx at issue 4)
Base+8E Reserved 0000h
Base+90 Driver ID 0000h
Base+92 Driver ID 0000h
Base+94 Flags 0002h
Base+96 No of bytes used 001Ah
Base+98 Not used 0000h
Base+9A Serial Number xxxxd

7. I/O Connections
Pin Signal Pin Signal

 IOC9010/PS/2.3

Page 18

8. Physical Hardware Configuration (Jumpers, Pots etc)
JUMPERS.

J1 Connects the strobe line from the Carrier Board to Industry Pack A Logic Connector pin 46.
J2 Connects the strobe line from the Carrier Board to Industry Pack B Logic Connector pin 46.
J3 Connects the strobe line from the Carrier Board to Industry Pack C Logic Connector pin 46.
J4 Connects the strobe line from the Carrier Board to Industry Pack D Logic Connector pin 46.
J5 Connects the strobe line from the Carrier Board to Industry Pack E Logic Connector pin 46.
J6 Connects the strobe line from the Carrier Board to Industry Pack F Logic Connector pin 46.
J7 Xlinx FPGA startup mode select Factory Set.
J8 Set temperature control mode – IN = lower thresholds.
J9 Xlinx FPGA startup mode select Factory Set.
J10 – J15 Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.
J16 – J21 Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.
J22 – J27 Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.
J28 – J33 Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.
J34 – J39 Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.
J40 – J45 Select connection mode for Industry Pack A external Clock, Trigger etc signals – normally all IN.
J46 Connects the common strobe line to the rear panel LEMO (option).
J47 Rear panel LEMO input to PC104+ module RESET line.
J48 Wiring points for PC104+ module RESET line.
J49 Rear panel LEMO input to common strobe line.

Other Jumper Selections:

There is a set of three pins next to HP7 labelled ‘DCOK’, 11 and 22. This is factory set to DCOK-22.

SWITCHES.

SW1 8-way switch pack for ‘Configuration 1’ settings, labelled ‘8-15’.
SW2-5 Reserved for future use.
SW6 8-way switch pack for ‘Configuration 2’ settings, labelled ‘0-7’.

Note: Configuration 1 and 2 are used in software to provide mode or location settings for a system.

VARIABLE RESISTORS.

VR1 Sets the contrast for the front panel LCD display and is factory set.
VR2 Sets the threshold for the temperature sensors and is factory set.
VR3 Sets the voltage regulator for low fan speed and is factory set.

 IOC9010/PS/2.3

Page 19

8. HYTEC TRANSITION BOARDS

Pin Signal Pin Signal

 IOC9010/PS/2.3

Page 20

APPENDIX A

Guide to Installing Linux on the 9010 IOC Blade

1. Install Linux, we usually use Scientific Linux 4, the base SL distribution of which is basically Red Hat

Enterprise Linux, recompiled from source. For more information and copies of the operating system
please go to https://www.scientificlinux.org/. Choose the version of Linux you want to use, it MUST
have a 2.6 Kernel if you want to do any work with the Hytec IOC Blade 9010. As its PCI interface
code is presently only supported with this Kernel.

2. Select Installation Language (e.g. English(English)).
3. Select Keyboard (e.g. United Kingdom).
4. Select Mouse (it will indicate what you are presently using, so normally just click on next).
5. Partition Disk (Automatic is OK in most cases). If you are installing onto some sort of restricted

system, such as a Flash Disk on a PC104, you need…

• /boot – 76Mb on ext3 – Force to be Primary Partition.
• 250Mb on swap. Can be less but get it as close to this as possible.
• / - Rest of the Disk (i.e. Fill all available space).

6. (Linux Text install) Select use GRUB Boot Loader.
7. (Linux Text install) Enter Boot Loader special options, normally leaving blank is usually fine.
8. (Linux Text install) Enter Boot Loader Password, normally leaving blank is usually fine.
9. (Linux Text install) Add other operating system to Boot Loader if required.
10. (Linux Text install) Select installing Boot Loader on to Master Boot Record (MBR).
11. Network Configuration (Automatically by DHCP is OK in most cases).
12. Firewall Configuration, either have No Firewall or preferably Enable Firewall under ‘Other ports’

entry box list the EPICS ports i.e. ‘5064:tcp,5065:tcp,5064:udp,5065:udp’.
13. Add any language support required.
14. Select Time Zone.
15. Enter root password and confirm.
16. (Linux Text install) If you are installing onto some sort of restricted system, such as a Flash Disk on a

PC104, you need to use ‘customize software selection’ and at least include (as a minimum for
EPICS)…

• Development Tools.
• Kernel Development.
• Legacy Software Development.

17. Insert CD 2 to 4 as requested.
18. Graphical Interface Configuration (it will indicate what you are presently using, so normally just click

on next).
19. Monitor Configuration (it will indicate what you are presently using, so normally just click on next).
20. Customize Graphics Configuration (it will indicate what you are presently using, so normally just click

on next, restriction for PC104).
21. Agree to License.
22. Set Date and Time.
23. Add user.
24. Skip additional CD Installation.

https://www.scientificlinux.org/

 IOC9010/PS/2.3

Page 21

APPENDIX B

Guide to Producing Stand Alone Auto Booting 9010 IOC Blade

Graphical Version

It is envisaged that the development will be done under root whereas the auto boot will be a normal user.
This setup allows easy kernel code modification and offers better security to the source code, since the
automatic log in will not give write access. To produce this setup…

1. Disable the “Halt on Keyboard Error” in the bios. Various PC104+ modules support
different bios, but normally under the Standard Bios Heading there is ‘Halt On’ section.
This need to be set to ‘All, But Keyboard’. This will allow the 9010 to boot normally
even without a keyboard fitted.

2. Scientific Linux 4, supports both the Gnome and KDE environments. KDE allows
automatic log in and can restore the last session, which can be used to allow a Graphical
Installation of Linux to automatically log on and run up the EPICS IOC application
immediately after power up.

3. To enable automatic logon, click on K -> System Settings -> Login Screen. Select the
‘Login a user automatically on first boot up’ and then select a user from the ‘Automatic
login username’ list. Select close.

4. Only a non-root user can be enabled to automatically logon, but to install the kernel you
need root privileges. To give the user such privileges you need to…

i) In the file /etc/sudoers you need to add the line…

test ALL=(ALL) NOPASSWD:ALL

This allows the user ‘test’ to usurp the powers of root without the need to enter a
password. To edit /etc/sudoers you will need change the privileges (i.e. chmod 777
/etc/sudeors) you must ensure that the privileges are restored to the original settings (i.e.
chmod 0440 /etc/sudeors).

ii) Add the non-root user to the root group…

 Click on K -> System Settings -> Users and Groups.

Click on the desired user to auto login from the presented list and then the ‘properties’
button, then click on the ‘groups’ tag and add (tick) the ‘root’ group.

5. Right Click on Desktop -> Create New -> File -> Link to Application. Change to the

‘Application’ Tab and use the ‘Browse’ button to your start up shell or application (i.e.
/root/startup.sh). Click on the ‘Advanced Options’ button and select the ‘Run in terminal’
option. Change to the ‘permissions’ tab and change the ownership selection to root (you
may need to re-login for all the options to appear). Now there exists a link to the EPICS
IOC application. The startup.sh needs a slight modification the command line installing
the kernel must be preceeded by ‘sudo’, i.e.

sudo /root/IOCBlade9010/pci/IOC9010_load

 IOC9010/PS/2.3

Page 22

6. To automatically restore the last session, click on K -> Control Centre -> KDE

Component -> Session Manager. Select the ‘Restore previous session’ under the ‘On
Login’. Select ‘Apply’.

7. Now if the link is used to run the EPICS IOC application, and KDE is logged out, it will
now automatically restore.

We have not found a satisfactory “automatic log in / restore the last session” method under Gnome but for
those developers who prefer to work under Gnome. You can add a command to install the 9010 kernel
driver in the file /etc/profile, i.e. simply add the line ‘/root/IOCBlade9010/pci/IOC9010_load’.

Command Line Version

If the application needs to be run on Compact Flash then it is envisaged that the installation will be run
under a minimized command-line Linux. To produce an automatic login under a command line only
installation…

1. Disable the “Halt on Keyboard Error” in the bios. Various PC104+ modules support
different bios, but normally under the Standard Bios Heading there is ‘Halt On’ section.
This need to be set to ‘All, But Keyboard’. This will allow the 9010 to boot normally
even without a keyboard fitted.

2. The login commands can simply be added to bash shell. To edit the bash shell (Linux
default shell), you need to edit the hidden file .bash_profile (can be seen with ls –al from
/root) and modify to something like below . The important additions are highlighted….

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME="root"
EPICS_HOST_ARCH=linux-x86
EPICS_BASE=/usr/local/EPICS/base-3.14.8.2

export USERNAME BASH_ENV PATH EPICS_HOST_ARCH EPICS_BASE

 IOC9010/PS/2.3

Page 23

APPENDIX C

Guide to Installing EPICS on the 9010 IOC Blade

All previously released versions of Base are now publicly available, including a nightly snapshot of the
R3-14 branch of the EPICS CVS repository. To discover the size of the download files in advance, visit
the Base Download area. The tar file linked below contains source code only (no binaries), and was
compressed using gnuzip. baseR3.14.8.2.tar.gz

1. Gotohttp://www.aps.anl.gov/epics/base/R3-14/6.php
2. load ‘baseR3.14.8.2.tar.gz’ to /usr/local/EPICS. Make the directory if necessary(i.e. mkdir).
3. Unzip it (i.e. gunzip baseR3.14.8.2.tar.gz).
4. Expand it (i.e. tar xvf baseR3.14.8.2.tar).
5. Before you can build or use EPICS, you must set a couple of environment variables This can be

done by either simply typing the two commands (i.e.
• export EPICS_HOST_ARCH=linux-x86
• export EPICS_BASE=/usr/local/EPICS/base-3.14.8.2)

or by modifying the bash shell. To edit the bash shell (Linux default shell), you need to edit the
hidden file .bash_profile (can be seen with ls –al from /root) and modify to something like below .
The important additions are highlighted….

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin
BASH_ENV=$HOME/.bashrc
USERNAME="root"
EPICS_HOST_ARCH=linux-x86
EPICS_BASE=/usr/local/EPICS/base-3.14.8.2

export USERNAME BASH_ENV PATH EPICS_HOST_ARCH EPICS_BASE

6. Move to the build directory containing the EPICS make file (i.e cd /usr/local/EPICS/base-

3.14.8.2).
7. make EPICS (i.e. make).

http://www.aps.anl.gov/epics/download/base/index.php
http://www.aps.anl.gov/epics/download/base/baseR3.14.6.tar.gz
http://www.aps.anl.gov/epics/base/R3-14/6.php

 IOC9010/PS/2.3

Page 24

APPENDIX D

Guide to Building an EPICS Example
1. Make a directory under your root, suitably named for the example you wish to build (i.e. mkdir

IOCBlade9010).
2. Change to this newly created directory (i.e. cd IOCBlade9010)..
3. Call a script to build an example, in the following command ‘-t example’ is telling it to build

an example type script and IOC9010 is its name (i.e. /usr/local/EPICS/base-
3.14.8.2/bin/linux-x86/makeBaseApp.pl -t example IOC9010)

4. Run a second script (i.e. /usr/local/EPICS/base-3.14.8.2/bin/linux-x86/makeBaseApp.pl -i -t
example IOC9010).

5. make (i.e. make)
6. Under your example directory, the directory structure /iocBoot/’ioc + ‘Example Name’ will

have been added. Change to this sub-directory (i.e. cd iocBoot/iocIOC9010).
7. This directory contains a script (st.cmd) this files need to be made executable (i.e. chmod 777

st.cmd).
8. run it (i.e. ./st.cmd).
9. Typing the command ‘dbl’ will list the

Quick EPICS Test
1. cd/usr/local/EPICS/base-3.14.8.2/bin/linux-x86
2. ./caRepeater&
3. ./caget IOC:aiChannel1

Adding Device Support to an EPICS Example
1. Copy the Device Support source file (c code file) to the source directory. The source (‘src’)

directory is in the ‘App’ directory (which is named ‘Example Name’ + ‘App’) under the top
example directory (i.e. in the above example it is /IOCBlade9010/IOC9010App/src).

2. Include the source file in the source directory’s makefile. The makefile is also in the source
directory and needs a line added under the ‘# Add locally compiled object code’ heading (e.g.
something like IOC9010_SRCS+=devHy8601.c).

3. Modify the build to include the EPICS records added by the new device support. Again in the
source directory there is the file xxxSupport.dbd, you will need to add a line for each EPICS
record to be supported (e.g. of the format device(ao,VME_IO,devAoHy8601,”Hy8601”)).

4. Change to the top level of the example directory (i.e. cd / IOCBlade9010).
5. re-make (i.e. make).
6. Assuming the source has been successfully built, you will need to add your db file. The db file

is usually contained in the ‘db’ directory under the top example directory (i.e. in the above
example it is /IOCBlade9010/db). Copy your db file into this directory.

7. The file (st.cmd) needs to call the newly included db file. Under your example directory, in the
directory structure /iocBoot/’ioc + ‘Example Name’ you will find the st.cmd. Change to this
sub-directory (e.g. in the above example cd iocBoot/iocIOC9010) and then add this db file (e.g.
dbLoadRecords("db/Hy8601-ao.db","device=IPCard"))

8. You should now be able to re-run it (i.e. ./st.cmd) and access the new variables.

 IOC9010/PS/2.3

Page 25

APPENDIX E

Guide to Installing and Running Medm

1. Go to web site http://www.aps.anl.gov/epics/download/extensions/index.php
2. Download the following three files and copy them into base directory /usr/local/EPICS/base-

3.14.8.2

medm3_0_3.tar.gz
extensionsConfig_20040406.tar.gz
extensionsConfigure_20040406.tar.gz

3. Extract all three files from there. This will build the extension structures.
4. Find the file RELEASE in the…

/usr/local/EPICS/base-3.14.8.2/extensions/config directory and open it by using a text
editor. Change the line EPICS_BASE= to the current base directory i.e.

EPICS_BASE=/usr/local/EPICS/base-3.14.8.2

And save it. Do the same change to the RELEASE file in the /usr/local/EPICS/base-
3.14.8.2/extensions/configure directory and save it.

5. Go to medm subdirectory by typing:

 cd /usr/local/EPICS/base-3.14.8.2/extensions/src/medm

6. Build medm by doing a make, i.e. simply type…

Make

This will take possibly half an hour to build the medm depending on the speed of your
machine.

7. Once the build is complete, to run medm simply change to directory….

 cd /usr/local/EPICS/base-3.14.8.2/extensions/src/medm/medm/0.linux-x86

8. Then Run it, i.e. simply type…

./medm

9. If you have an example to run, simply use the mouse to click on FILE -> OPEN and navigate
for the example display file (*.adl is the normal extension).

10. To run it, click on the ‘Execute’ button.

http://www.aps.anl.gov/epics/download/extensions/index.php
http://www.aps.anl.gov/epics/download/extensions/medm3_0_3.tar.gz
http://www.aps.anl.gov/epics/download/extensions/extensionsConfig_20040406.tar.gz
http://www.aps.anl.gov/epics/download/extensions/extensionsConfigure_20040406.tar.gz

 IOC9010/PS/2.3

Page 26

Installing the Hytec IOC Blade Linux Kernel 2.6 Driver

1. As you are installing / running some kernel level code, you will find it it much easier to log on as
root. Also this Driver is for a Linux Kernel 2.6 Version only (such as found with Scientific Linux
4.0).

2. Go to web site http://www.newwoodsolutions.co.uk
3. Download the file IOCBlade9010.tar.gzip and copy it into the root directory… /root
4. Extract it in this location.
5. This is an EPICS example application and also includes a copy of the Hytec IOC Blade Linux

Kernel 2.6 Driver under the Directory… /root/IOCBlade9010/pci
6. To install the driver simply type.. /root/IOCBlade9010/pci/IOC9010_load

http://www.newwoodsolutions.co.uk/

 IOC9010/PS/2.3

Page 27

APPENDIX F

Vsystem Support

The Hytec IOC Blade 9010 Linux Kernel Driver can also be used with Vsystem and Hytec have produced
example drivers for all its IP card range. They also contain simple examples (including source and build
files). The development directory structure is as follows....

Development Directory Structure

In the directory /usr/local /IOC9010/HYTECIPS/Release/ you will find these sub-directories and
files…

example/demo_use.c - This has various blocks of example code used to test the Hytec IP Cards.

include/*.h - This contains the header files for individual Hytec IP Cards.

Src/HytecIPAPIs.cpp – Source Code for Hytec IP Card Classes.

In the directory /usr/local /IOC9010/IOCGeneric/src is the file...

IOCGeneric.cpp – Source Code for Hytec Generic IOC Access Classes.

System Setup

The following things MUST be done !

1. To be able to build and run your example code “/usr/local/lib” MUST be on the path, the easiest
thing to do is to add it to your shell command, for instance if you use bash, simply add the line
“export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib” to .bash_profile file.

2. All the Vsystem support is via IOC Blade 9010 Kernel Driver, so this needs to be loaded, the
easiest thing is to simply type “/root/IOCBlade9010/pci/IOC9010_load” from inside your
development shell.

 IOC9010/PS/2.3

Page 28

Build Sequence

1. Build the Generic Functions (i.e. ./usr/local /IOC9010/IOCGeneric/src/makescript).

2. Build the Specific Library Functions (i.e. ./usr/local /IOC9010/HYTECIPS/Release/src/makescript).

3. Build the Test Example (i.e. ./usr/local /IOC9010/HYTECIPS/Release/example/make).

Distribution and Installation

The previous discussion aside usually a Hytec Vsystem distribution is usually just the Library, Header
and Example files. A simple pack script generate a tar of tars of these files, which is distributed. The
user simply has to unpack them to create / overwrite the directories. Implement the system setup
described above and then the user is ready to edit, build and try example code.

Usually our Vsystem directories are set up under /usr/local/IOC9010 and are as follows....

1. Under usr/local/IOC9010/HYTECIPS…
 Release
 example
 demo use files
 include
 api function header files

Directly under /usr/local/IOC9010 is the HYTECIPS directory which has the example directory with
some demonstration code and the include directory which contains IP Cards header files.

2. Under usr/local/IOC9010/IOCGeneric…
 example
 more demo use files
 include
 driver c source and header files

Directly under /usr/local/IOC9010 is the IOCGeneric directory which has the include directory for the
Generic (i.e. can be used on 9010 and 5331/3331) access functions.

3. usr/local/lib…

When the Vsystem library is built it generates two library files which have to be transferred to the
following usual library file location (i.e. usr/local/lib). The library files are libHytecIPAPIs.so.1.O (the IP
Cards API) and libIOCGeneric.so.1.0 (the generic kernel calls).

 IOC9010/PS/2.3

Page 29

APPENDIX G

Writing Your Own IP Card Drivers

The Hytec IOC Blade 9010 Linux Kernel Driver is contained in the Directory /root/IOCBlade9010/pci.
This Directory includes the driver itself, load / unload scripts and a header file to allow you to access the
IP Cards and the actual IOC Blade 9010 Registers. It also contains a simple example (including source
and makefiles). The files in this directory are....

9010LinuxDriver.c / 9010LinuxDriver.h

Source Code of the Kernel Driver. Do NOT Edit ! The 9010LinuxDriver.ko IS built from these files,
only edit these if you wish to change the kernel level operation and always backup the originals.

IOC9010_load

A script to load / install the Kernel Driver (i.e. ./IOC9010_load). The 9010LinuxDriver.ko MUST have
been built before this script is run. An IOC Blade 9010 is always shipped with an operational copy of
9010LinuxDriver.ko.

IOC9010_unload

A script to unload / remove the Kernel Driver (i.e. ./IOC9010_unload). The 9010LinuxDriver.ko MUST
have been built before this script is run. An IOC Blade 9010 is always shipped with an operational copy
of 9010LinuxDriver.ko.

main.c

Example Source Code for the User to Edit ! This is normally matched to the system configuration
brought. Once built it can be run.

Makemain

Simple script to build the Source Code main.c to use (i.e. ./makemain) to make the executable main. To
run type ./makemain.

 IOC9010/PS/2.3

Page 30

makefile

Simple makefile to build the Kernel Driver object (9010LinuxDriver.ko) from the Source Code
(9010LinuxDriver.c and 9010LinuxDriver.h) for the course attendee to use (i.e. make) to make the Kernel
Driver.

9010LinuxDriver.ko MUST be built before the scripts (IOC9010_unload and IOC9010_load) are run.

The driver provides functions that use stream like operations, so you for instance read the ID PROM of
the IP Card in Site A…

/* Open the Stream */
IOCHandle = open("/dev/IOC9010",0);
if (IOCHandle = = -1) printf("9010: Error Opening Device !\n");

/* Set up the Data Structure */
ioctl_buf.lAddress = IP_A_ID_BASE_ADDR + ID_MODEL_NUMBER;
ioctl_buf.lLength = 1;
ioctl_buf.sData = (unsigned long)(&data);

/* Read IP Card Type from ID PROM */
*val = ioctl(IOCHandle, OP_GENERAL_READ, &ioctl_buf);

printf("IP Slot %c = %4X\n", 'A', *val);

/* Close the Stream */
close(IOCHandle);

or reading the first 5 registers on the 8505 IP Card in Slot C…

IOCTL_BUF ioctl_buf;
unsigned short data = value;
unsigned short readbuffer[5];
int IOCHandle;

IOCHandle = open("/dev/IOC9010",0);
if (IOCHandle == -1) printf("8505: Error Opening Device !\n");

/* 8505 Basic Digital Output Setup */
ioctl_buf.lAddress = IP_C_IO_BASE_ADDR;
ioctl_buf.lLength = 5;
ioctl_buf.sData = (unsigned long)(readbuffer);
ioctl(IOCHandle, OP_GENERAL_READ_BLOCK, &ioctl_buf);

close(IOCHandle);

 IOC9010/PS/2.3

Page 31

Developing and Running Your Own IP Card Drivers

Assuming the most basic of systems and Linux installations the beginner can develop even inside a
terminal window…

1. Log in root user (default password for IOC Blade 9010 is password). Root privileges are
required for kernel driver installation.

2. Open a terminal.
3. Change to the Directory type /root/IOCBlade9010/pci.
4. Type ./IOC9010_load to install the Hytec Kernel Driver.
5. Type vi main.c – to edit the source code. Obviously you can use any text editor, I am sure your

version of Linux will provide a useful graphical editor. Obviously a knowledge of C is required.
6. Type ./makemain - to make the executable main.
7. To run type ./main.

Type ./IOC9010_unload to remove the Hytec Kernel Driver when you have finished.

 IOC9010/PS/2.3

Page 32

APPENDIX H

EPICS Variables Pre-Installed on IOC Blade 9010 Demo

EPICS Variable Name

Description Range

Hy9010:ai-Fan1-PSU Speed in rpm of Fan 1 – Rear
Fan nearest the PSU

Limits 0-10,000 rpm.
Slow – 5,000 High - 7,000

Hy9010:ai-Fan2-IPCards Speed in rpm of Fan 2 – Rear
Fan near the IP Cards

Limits 0-10,000 rpm.
Slow – 5,000 High - 7,000

Hy9010:ai-Fan3-Invertors Speed in rpm of Fan 3 – Rear
Fan near Invertors

Limits 0-10,000 rpm.
Slow – 5,000 High - 7,000

Hy9010:ai-Fan4-Trans Speed in rpm of Fan 4 –
Front Fan near Transition

Limits 0-10,000 rpm.
Slow – 5,000 High - 7,000

Hy9010:ai-Fan5-PC104+ Speed in rpm of Fan 5 –
Front Fan for PC104+

Limits 0-10,000 rpm.
Slow – 5,000 High - 7,000

Hy9010:ai-Fan6-PMC Speed in rpm of Fan 6 – Fan
under PMC

NOT FITTED

Hy9010:ai-temp1-IP Temperature of sensor near

the IP Cards
Limits 0-40 ºC in 10 ºC
steps.

Hy9010:ai-temp2-PSU Temperature of sensor near
the PSU

Limits 0-40 ºC in 10 ºC
steps.

Hy9010:ai-temp3-PC104+ Temperature of sensor under
the PC104+

Limits 0-40 ºC in 10 ºC
steps.

Hy9010:ai-temp4-PMC Temperature of sensor near
the PMC

Limits 0-40 ºC in 10 ºC
steps.

Hy9010:ai-temp5-Trans Temperature of sensor near
the transition cards

Limits 0-40 ºC in 10 ºC
steps.

Hy9010:ai-IP-Card-A The ID from the ID PROM in

Site A
Hytec Electronics Ltd IP
Cards are encoded in Hex.

Hy9010:ai-IP-Card-B The ID from the ID PROM in
Site B

Hytec Electronics Ltd IP
Cards are encoded in Hex.

Hy9010:ai-IP-Card-C The ID from the ID PROM in
Site C

Hytec Electronics Ltd IP
Cards are encoded in Hex.

Hy9010:ai-IP-Card-D The ID from the ID PROM in
Site D

Hytec Electronics Ltd IP
Cards are encoded in Hex.

Hy9010:ai-IP-Card-E The ID from the ID PROM in
Site E

Hytec Electronics Ltd IP
Cards are encoded in Hex.

Hy9010:ai-IP-Card-F The ID from the ID PROM in
Site F

Hytec Electronics Ltd IP
Cards are encoded in Hex.

 IOC9010/PS/2.3

Page 33

EPICS Variable Name

Description Range

IPCard:mbboDirect An 8505 Card in Slot C
outputs is driven via this.

0-65535

IPCard:ao00 An 8402 Card in Slot B

output 0 is driven via this.
-10V to +10V

IPCard:ao01 An 8402 Card in Slot B
output 1 is driven via this.

-10V to +10V

IPCard:ao02 An 8402 Card in Slot B
output 2 is driven via this.

-10V to +10V

IPCard:ao03 An 8402 Card in Slot B
output 3 is driven via this.

-10V to +10V

IPCard:ao04 An 8402 Card in Slot B
output 4 is driven via this.

-10V to +10V

IPCard:ao05 An 8402 Card in Slot B
output 5 is driven via this.

-10V to +10V

IPCard:ao06 An 8402 Card in Slot B
output 6 is driven via this.

-10V to +10V

IPCard:ao07 An 8402 Card in Slot B
output 7 is driven via this.

-10V to +10V

IPCard:ao08 An 8402 Card in Slot B
output 8 is driven via this.

-10V to +10V

IPCard:ao09 An 8402 Card in Slot B
output 9 is driven via this.

-10V to +10V

IPCard:ao10 An 8402 Card in Slot B
output 10 is driven via this.

-10V to +10V

IPCard:ao11 An 8402 Card in Slot B
output 11 is driven via this.

-10V to +10V

IPCard:ao12 An 8402 Card in Slot B
output 12 is driven via this.

-10V to +10V

IPCard:ao13 An 8402 Card in Slot B
output 13 is driven via this.

-10V to +10V

IPCard:ao14 An 8402 Card in Slot B
output 14 is driven via this.

-10V to +10V

IPCard:ao15 An 8402 Card in Slot B
output 15 is driven via this.

-10V to +10V

 IOC9010/PS/2.3

Page 34

APPENDIX I

IOC Blade 9010 API Commands
__

IOC9010Open

Syntax
FUNCTION IOC9010Open(void) : int;

Parameter
None.

Result
If successful the return value will be positive and will be the Identifier.
A return value of -1 indicates the open has failed.

Description
This function is called to obtain an identifier for all future calls to the API Functions.
This function MUST be called before any other.

Example

int iIOC9010Handle;
iIOC9010Handle = IOC9010Open();

IOC9010Close

Syntax
FUNCTION IOC9010Close(int i9010Handler) : void;

Parameter
i9010Handler : The handler to be closed.

Result
0 - is returned if the API is successfully closed.
-1 - indicates the close has failed.

Description
This function is used to close the API, it is last action of the program before closing the application.

Example

IOC9010Close(i9010Handle);

 IOC9010/PS/2.3

Page 35

IOC9010GetConfig

Syntax
FUNCTION IOC9010GetConfig(struct *PresentConfig) : int;

Parameter
*PresentConfig - A pointer to a structure to write the present configuration into..

Result
0 - is returned if the structure is successfully written.
-1 - indicates the structure update has failed.

Description
This function populates a passed structure with details of the IOC Blade 9010’s present configuration.

 *PresentConfig - The structure is as follows…

Example

IOC9010GetConfig();

 IOC9010/PS/2.3

Page 36

__

IOC9010SetConfig

Syntax
FUNCTION IOC9010SetConfig() : int;

Parameter

Result
0 - is returned if the structure is successfully written.
-1 - indicates the structure update has failed.

Description
This function is used to update IOC Blade 9010’s present configuration.

Example

IOC9010FPC

Syntax
FUNCTION IOC9010FPC(int iMMIOnOFF) : int;

Parameter
iMMIOnOFF - ‘1’ Enable Automatic Front Panel Man-Machine Interface.
 - ‘0’ Disable Automatic Front Panel Man-Machine Interface.

Result
If successful the return value is 0, the automatic front panel control man-machine interface (MMI) is
disabled.
A return value of -1 indicates the action has failed.

Description
This function is used to disable or enable the automatic front panel control man-machine interface (MMI)
of the IOC Blade 9010. Once the MMI is disabled the display can be updated via the API.

Example

IOC9010FPC(0); /* Disable MMI, so can now over write Display */

IOC9010FPC(1); /* Enable MMI */

 IOC9010/PS/2.3

Page 37

IOC9010LCDWrite

Syntax
FUNCTION IOC9010LCDWrite(U16 position, U8 *string) : int;

Parameter
position – The start position of the string on the LCD. Values of…

0 – 39 is the number characters in from the left on the top line.
64 - 103 is the number characters in from the left on the bottom line.

To ease use the header file includes the following defines which can be OR ed or added to
produce the desired positioning. There is also the define API_LCD_CENTRE_ON which
will automatically centre the passed string.

API_LCD_LINE_1 (0)
API_LCD_LINE_2 (64)
API_LCD_CENTRE_ON (0x8000)

*string – a pointer to a null-terminated ASCII string (up to 40 characters in length) containing the

string to be written to the display.

Result
0 - is returned if the display is successfully written.
-1 - indicates the display update has failed.

Description
This function updates the front panel LCD with the passed strings at the requested position.
This function is can ONLY be used when the automatic front panel man-machine interface is disabled.

Example
Char sTopString[] = “Top Line”;
Char sBottomString[] = “Bottom Line”;

/* Write String on Top Line Automatically Centred */
IOC9010LCDWrite(API_LCD_LINE_1 | API_LCD_CENTRE_ON, sTopString);

/* Write String on Bottom Line 10 Character in from Left */
IOC9010LCDWrite(API_LCD_LINE_2 + 10, sBottomString);

 IOC9010/PS/2.3

Page 38

IOC9010LCDRead

Syntax
FUNCTION IOC9010LCDRead(U8 *LCDString) : int;

Parameter
*LCDString - a pointer to a null-terminated string, 80 characters in length, containing the ASCII

characters presently on the display.

Result
 0 - is returned if the display is successfully read.
-1 - indicates the reading of the display has failed.

Description
This function is used to obtain the present message on the front panel display. Characters 0-39 is the top
line and characters 40-79 is the bottom line.

Example

char cLCDString[80];
if (IOC9010LCDRead(cLCDString) == 0)
{

printf(“The LCD is presently displaying %s\n”, cLCDString);
}

IOC9010LCDClear

Syntax
FUNCTION IOC9010LCDClear(void) : int;

Parameter
None.

Result
0 - is returned if the display is successfully cleared.
-1 - indicates the display update has failed.

Description
This function clears the front panel LCD i.e. sets all characters to space (ASCII 0x20).
This function is can ONLY be used when the automatic front panel man-machine interface is disabled.

Example

IOC9010LCDClear();

 IOC9010/PS/2.3

Page 39

IOC9010ConnectFunctToKey

Syntax
FUNCTION IOC9010ConnectFunctToKey(void *function, int switch) :
int;

Parameter
*function – A pointer to the function to be called.

switch – The switch to monitor.

To ease use the header file include defines for all switches.

Result
0 - is returned if the function is successfully connected to the requested switch.
-1 - indicates the action failed.

Description
This function is used to connect the passed function is to the requested switch.

The function will automatically perform all the hardware debounce etc.

This function is can ONLY be used when the automatic front panel man-machine interface is disabled.

Example

void vOKPressed(void)
{
 printf(“OK Key Pressed\n”);
}

IOC9010ConnectFunctToKey(&vOKPressed(void), API_SWITCH_OK)

 IOC9010/PS/2.3

Page 40

IOC9010ConnectFunctToInt

Syntax
FUNCTION IOC9010ConnectFunctToInt(void *function, int Int) : int;

Parameter
*function – A pointer to the function to be called.

Int – The switch to monitor.

To ease use the header file include defines for all IP Cards Interrupts.

Result
0 - is returned if the function is successfully connected to the requested Interrupt.
-1 - indicates the action failed.

Description
This function is used to the connect passed function to the requested interrupt source.

Example

void vIPSlotAISR(void)
{
 printf(“IP Slot A Interrupt Detected\n”);
}

IOC9010ConnectFunctToInt(&vIPSlotAISR(void), API_INT_SLOT_A_0)

 IOC9010/PS/2.3

Page 41

IOC9010CarrierRead

Syntax
FUNCTION IOC9010CarrierRead(U16 add, U16 len, U16 *data) : int;

Parameter
Add – The position of the first register to read.

To ease use the header file include defines of Register Addresses.

Len – The number of registers to read.

*data – A pointer to an array or U16 (for single register access) to store the registers contents.

Result
0 - is returned if the carrier board register is successfully read.
-1 - indicates the carrier board register read has failed.

Description
This function is used to read the Control and Configurations Registers on the IOC Blade 9010 Carrier
Board itself.

Example

U16 U16CarrierRegs[9];

/* Read all the 9010 Carrier Board Registers */
IOC9010CarrierRead(API_REG_CSR, 9, U16CarrierRegs);

 IOC9010/PS/2.3

Page 42

IOC9010CarrierWrite

Syntax
FUNCTION IOC9010CarrierWrite(U16 add, U16 len, U16 *data) : int;

Parameter
Add – The position of the first register to write.

To ease use the header file include defines of Register Addresses.

Len – The number of registers to write.

*data – A pointer to an array or U16 (for single register access) to store the register contents.

Result
0 - is returned if the carrier board register is successfully written.
-1 - indicates the carrier board register write has failed.

Description
This function is used to write the Control and Configurations Registers on the IOC Blade 9010 Carrier
Board itself.

Example

U16 U16CarrierReg = 0x0001;

/* Write the IOC9010 Carrier Board CSR Register */
IOC9010CarrierWrite(API_REG_CSR, 1, &U16CarrierReg);

 IOC9010/PS/2.3

Page 43

IOC9010IPRead

Syntax
FUNCTION IOC9010IPRead(U16 add, U16 len, U16 *data) : int;

Parameter
Add – The position of the first IP register / memory to read.

To ease use the header file include defines of Addresses.

Len – The number to read.

*data – A pointer to an array or U16 (for single register access) to store the read contents.

Result
0 - is returned if the read is successful.
-1 - indicates the read has failed.

Description
This function is to read data from any of the IP Cards contents.

Example

U16 U16IPRegs[5];
U16 U16_IP_ID;
U16 U16_ADC;

/* Read the I/D Register from IP Card in Site A */
IOC9010IPRead(API_ IP_A_ID_BASE_ADDR + API_ID_MODEL_NUMBER,
 1,

& U16_IP_ID);

/* If its an Hytec Electronics Ltd 8401 8 X 16 Bit ADC */
if (U16_IP_ID == 0x8401)
{

/* Read the first 5 I/O Registers from IP Card in Site A */
IOC9010IPRead(API_ IP_A_IO_BASE_ADDR, 5, U16IPRegs);

/* Read All the ADC Values from IP Card in Site A */
IOC9010IPRead(API_ IP_A_IO_BASE_ADDR + 16, 8, U16_ADC);

}

 IOC9010/PS/2.3

Page 44

IOC9010IPWrite

Syntax
FUNCTION IOC9010IPWrite(U16 add, U16 len, U16 *data) : int;

Parameter
Add – The position of the first register to write.

To ease use the header file include defines of Addresses.

Len – The number to write.

*data - – A pointer to an array or U16 (for single register access) to store the register contents.

Result
0 - is returned if the display is successfully cleared.
-1 - indicates the display update has failed.

Description
This function is to write data to any of the IP Cards contents.

Example

U16 U16IPReg = 0x0001;

U16 U16SetUp = {0x0C01,0x0078,0x0000,0x0000};

/* Write the 3rd I/O Registers on the IP Card in Site F */
IOC9010IPWrite(API_ IP_F_IO_BASE_ADDR + 2, 1, &U16IPReg);

/* Set up the Hytec Electronics Ltd 8505 in Site B */
IOC9010IPWrite(API_ IP_B_IO_BASE_ADDR + 1, 4, U16SetUp);

 IOC9010/PS/2.3

Page 45

APPENDIX J

IOC Blade 9010 HTML Web Interface

Introduction

The HTML support is NOT intended for normal everyday control use (perhaps with the exception of the
Remote Reset / Reboot) but is intended only for the following activities…

1. Out of the Box Testing – Since the HTML Webpage can be accessed by any internet browser, it
is envisaged that one of its primary uses would be “Out of the Box” testing. The IOC Blade 9010
can be taken out of the box, be fitted with the desired selection of IP Cards. If the 9010 is then
connected to a network (or straight to a PC with an Ethernet Crossover Lead), any internet
browser can access the Web interface and confirm the unit settings and the IP Cards fitted.

2. Remote Testing – The HTML Webpage allows IP Card Registers to be overwritten as well as

read. With Hytec Electronics Ltd IP Cards this will allow the HTML interface to directly modify
outputs or read inputs. This effectively gives you an instant, network controlled, with flexible
outputs / inputs piece of test equipment. Which you put anywhere on your network and test and
monitor any system signals without the need to develop any software.

3. Configuration – The first tab of the Webpage will allow elements such as the 9010’s IP Address,

Subnet Mask etc allowing the 9010’s general set up to be done relatively easily and quickly.

4. Remote Reset / Reboot – There is a button on the first tab of the Webpage, which will run a script
which will shutdown and restart the IOC Blade 9010. This may allow a remote recovery if an
EPICS or OPC application has crashed.

Using the HTML Webpage Interface

To access the Webpage simply start your favourite internet / web browser and where you normally enter
the address, enter the IP Address of IOC Blade 9010 in dot-decimal notation (e.g. 172.23.81.192). As
long as there is no problem with sub-net, firewall or some other access problem, you should immediately
see the IOC Blade 9010 Webpage.

The webpage is made up of 7 tabbed sub pages, one for each IP Card and the front page which is specific
to the 9010.

 IOC9010/PS/2.3

Page 46

Letting the Webpage Know the IP Card “Personality”

The webpage reads the list of registers to show for each IP Card from the configuration file, ip_types.db,
which is a simple comma delimited text file. Each IP Card’s “personality” is a single line entry in the file
and is of the format…

Vendor ID, Product ID, No Reg, Reg Name 1 … Reg Name N , No Mem, Name Mem 1…Name Mem N

Vender ID The Manufactor / Vendor ID of the IP Card as in the ID PROM.
Product ID The Product ID of the IP Card as in the ID PROM.
No Reg The Number of registers from start of the I/O Space to be named in the following data.
Reg Name 1 The Name to be displayed on the Web page of the first register in the I/O Space.
…
Reg Name N The Name to be displayed on the Web page of the Nth register in the I/O Space.
No Mem The Number of registers from the start of Memory Space to be named in following data.
Mem Name 1 The Name to be displayed on the Web page of the first register in the Memory Space.
…
Mem Name N The Name to be displayed on the Web page of the Nth register in the Memory Space.

Notes:-

3. Vendor and Product ID Combination used to uniquely identify the IP Card.
4. Reg Name 1…N is a contiguous list of names for contiguous expecting to name a contig

Typical Examples of Hytec Electronics Ltd’s IP Cards are shown below…

0x00800300, 0x8505, 6, LKC, CSR, IMR , DBR, PSR, PPR
0x00800300, 0x8513, 4, CSR, ARM, IRQ STATUS, IRQ MASK, 8, COUNT 0 LSB, ………

The IOC blade 9010 will be supplied with a default ip_types.db, which will support the Hytec Electronics
Ltd range of IP Cards presently available. If you wish to support other manufacturers, you can simply
add additional entries / lines to the file.

 IOC9010/PS/2.3

Page 47

APPENDIX K

IOC Blade 9010 TCP/IP Interface

Introduction

This document defines the proprietary TCP/IP commands supported by Hytec Electronics Ltd equipment.
The TCP/IP will support a single socket.

Command Set

All the TCP/IP Instructions are made up of a Command and Response, both have the same identifier, but
the Response has the Most Significant Bit set (0x80).

Status

This command is used to obtain a list of IP (Industry Pack) cards installed in an IOC. This is assuming
that the IP Cards fitted are VITA4 compliant and have their identification stored in an ID PROM.

Status Command

Byte Byte Description Range
1 Command Identifier 0x01
2 Command Length (bytes to follow) 0x00

Figure 2: Format of Status Command

Status Command Response

Byte Byte Description Range
1 Command Identifier 0x81
2 Command Length (bytes to follow) IP Cards x 4
3* Slot Number 1-255
4* IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F 0-5
5* Top 2 Nibbles of IP Card encoded as BCD 0x00-0xFF
6* Bottom 2 Nibbles of IP Card encoded as BCD 0x00-0xFF

Note * These bytes are repeated for each and every IP Card Slot.

Figure 3: Format of Status Command Response

 IOC9010/PS/2.3

Page 48

Read Command

This command is used to read data from any IP (Industry Pack) card installed in an IOC. The format of
the data in the response is dependant on the IP card type.

Read Command

Byte Byte Description Range
1 Command Identifier 0x03
2 Command Length (bytes to follow) 2
3 Slot Number 1-255
4 IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F 0-5

Figure 4: Format of Read Command

Read Command Response

Byte Byte Description Range
1 Command Identifier 0x83
2 Command Length (bytes to follow) Length of

Response + 2
3 Slot Number 1-255
4 IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F 0-5
5* Response 0x00-0xFF

Note * These bytes are repeated for each and every relevant value on IP Card.

Figure 5: Format of Read Command Response

 IOC9010/PS/2.3

Page 49

Write Command

This command is used to write data to any IP (Industry Pack) card installed in an IOC. The format of the
data in the response is dependant on the IP card type. The response is simply an acknowledgement of
receipt of the command.

Write Command

Byte Byte Description Range
1 Command Identifier 0x04
2 Command Length (bytes to follow) Length of

Configure
String + 2

3 Slot Number 1-255
4 IP Card 0=A, 1=B, 2=C, 3=D, 4=E and 5=F 0-5
5* Control Data 0x00-0xFF

Note * These bytes are repeated for each and every relevant value on IP Card.

Figure 6: Format of Write Command

Write Command Response

Byte Byte Description Range
1 Command Identifier 0x84
2 Command Length (bytes to follow) 0

Figure 7: Format of Write Command Response

 IOC9010/PS/2.3

Page 50

APPENDIX L

Producing Disk Images for the IOC Blade 9010

Introduction

The recommended / supported Disk Image Making Software is the shareware G4L (Ghost for Linux)

This can be obtained from http://sourceforge.net/projects/g4l , there are various options we normally
prefer to download a CD Image (e.g. g4l-v0.22.iso) and produce a bootable CD. The default bios setting
on the IOC Blade 9010 is to try to boot from USB CD-ROM first, so normally simply attaching one will
allow you to boot straight into G4L. Obviously if your PC104+ bios is set to something different you
may need to alter you boot sequence.

When the IOC Blade 9010 boots off the G4L CD-ROM, do not panic its takes quite a long time as it has
to load the image etc, if it boots the following messages appear…

Loading bzImage6…………………………………………………………………………………………
Loading ramdisk.gz………………………………………………………………………………………..

At the command prompt type g4l <CR>.

Select Raw Mode.

We store our disk image on the network so you need to select “Network Use”.

A – Select eth0
B – Config Device
C – Config with DHCP
D – Config FTP (172.23.81.3)
E – Config useridpass (username : password)
F – Config filename (MOPS-PM600.gzip)
G – Compression (.gzip)

H – Backup (hda)
I – Restore (hda)

http://sourceforge.net/projects/g4l

 IOC9010/PS/2.3

Page 51

APPENDIX L

Idiots Guide to RTEMS

Introduction

RTEMS (Real-Time Executive for Multiprocessor Systems) is designed for real-time, embedded
systems. Due to its license free, open source nature it has rapidly become popular in markets
previously dominated by VxWorks, particularly the EPICS Community. It has been ported to
various target processor architectures, but we use it with i386 Family processors and have
specifically produced a PC104+ processor for the IOC Blade 9010 to support RTEMS. This
PC104+ is a variant of the MSM800 family with hardware changes

It is a free open source operating system and was originally designed for missile systems hence
initially the acronym stood for Real-Time Executive for Missile Systems, then became Real-Time
Executive for Military Systems before changing to its current meaning.

Its development began in the late 1980s with early versions of RTEMS available via ftp as early
as 1993. OAR Corporation is currently managing the RTEMS project in cooperation with a
Steering Committee which includes user representatives.
There should be at least 300 Mbytes of space available on the drive where these directories are
located. I used /usr/local/rtems/rtems4.7 as the installation target directory. The location of the
RTEMS source is not critical. This document assumes that the root of the RTEMs source tree is
/usr/local/rtems/source.

Create the RTEMS source and installation directories

There should be at least 300 Mbytes of space available on the drive where these directories are
located. I used /usr/local/rtems/rtems4.7 as the installation target directory. The location of the
RTEMS source is not critical. This document assumes that the root of the RTEMs source tree is
/usr/local/rtems/source.

Create the directories where the source will be placed and the results of the build installed:

/usr/local/rtems/source
/usr/local/rtems/source/tools
/usr/local/rtems/rtems4.7

Add the directory containing the tools to your shell search path
The following sections assume that the directory into which you will install the cross-
development tools (/usr/local/rtems/rtems4.7/is on your shell search path. For shells like sh, bash,
zsh and ksh you can to this with

 IOC9010/PS/2.3

Page 52

PATH="$PATH:/usr/local/rtems/rtems4.7/bin"
For shells like csh and tcsh you can
set path = ($path /usr/local/rtems/rtems4.7/bin)

Get and build the development tools
RTEMS uses the GNU toolchain to build the executive and libraries. Information about the GNU
tools can be found on the GNU home page. If you’re feeling brave you can skip the following
sections and turn loose the script included in appendixA. In either case, if you’re building on
Solaris you’ll need to ensure that you have GNU make (gmake) installed on your system and also
set a couple of environment variables for things to build properly:

MAKE=gmake
INTLLIBS=-lintl

The script attempts to download, unpack, configure, build and install the GNU cross-development
tools and libraries
for one or more target architectures. To use the script, set the ARCHS environment variable to the
architectures you
wish to support, then
sh getAndBuildTools.sh
Set the MAKE environment variable to the name of whatever make program you need for your
system.

Download the tool source files

The source for the GNU tools should be obtained from the On-line Applications Research (OAR)
FTP server since
that server provides any RTEMS-specific patches that may have to be applied before the tools can
be built.
The files in the OAR FTP server directory ftp://www.rtems.com/pub/rtems/SOURCES should be
downloaded to the
RTEMS/tools directory created above. The files can be downloaded using a web browser or a
command-line program
such as curl or wget. (note that the command examples have been split to help them fit on the
page):
curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/binutils-2.16.1.tar.bz2
curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/gcc-4.1.0.tar.bz2
curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/newlib-1.14.0.tar.gz
curl --remote-name
ftp://www.rtems.com/pub/rtems/SOURCES/binutils-2.16.1-rtems-20050816.diff
or
wget --passive-ftp --no-directories --retr-symlinks
ftp://www.rtems.com/pub/rtems/SOURCES/binutils-2.16.1.tar.bz2

 IOC9010/PS/2.3

Page 53

wget --passive-ftp --no-directories --retr-symlinks
ftp://www.rtems.com/pub/rtems/SOURCES/gcc-4.1.0.tar.bz2
...
Depending on the type of firewall between your machine and the OAR FTP server you may need
to remove the
--passive-ftp option from the wget commands.

Unpack the source archives:

The following commands will extract the GNU tool sources from the downloaded tar archive files.
bzcat binutils-2.16.1.tar.bz2 | tar xf -
bzcat gcc-4.1.0.tar.bz2 | tar xf -
zcat newlib-1.14.0.tar.gz | tar xf -
To build the newlib libraries needed by RTEMS you must make a symbolic link to the newlib source
directory from
the gcc source directory.
cd gcc-4.1.0
rm -rf newlib
ln -s ../newlib-1.14.0/newlib newlib
cd ..

Apply any RTEMS-specific patches

If any patch files (those with a .diff suffix) were downloaded from the OAR FTP server the patches in those
files
must be applied before the tools can be compiled.
Here is how the patches can be applied to the binutils sources:
cd binutils-2.16.1
patch -p1 <../binutils-2.16.1-rtems-20050816.diff
cd ..
2.3.4 Configure, build and install the ‘binutils’:
The commands in this section must be repeated for each desired target architecture. The examples shown
build the
tools for Motorola Power PC targets.
1. Create a directory in which the tools will be built and change to that directory.
rm -rf build
mkdir build
cd build
2. Configure the tools.
../binutils-2.16.1/configure --target=powerpc-rtems4.7 \
--prefix=/usr/local/rtems/rtems4.7
You should replace the ‘powerpc’ with the name of the architecture for which you’re building the tools.
Common
alternatives are ‘m68k’ and ‘i386’ for the Motorola M68k and Intel x86 family of processors, respectively.
3. Build and install the tools.
make -w all install
In this and all subsequent cases the use of a GNU make program is required. On some hosts you’ll have
to use
gmake instead of make.
4. Return to the directory containing the tool and library sources.
cd ..
2.3.5 Configure, build and install the cross-compiler and libraries
1. Create a directory in which the tools will be built and change to that directory.

 IOC9010/PS/2.3

Page 54

rm -rf build
mkdir build
cd build

Configure the compiler and libraries.

../gcc-4.1.0/configure --target=powerpc-rtems4.7 \
--prefix=/usr/local/rtems/rtems4.7 \
--with-gnu-as --with-gnu-ld --with-newlib --verbose \
--with-system-zlib --disable-nls \
--enable-version-specific-runtime-libs \
--enable-threads=rtems \
--enable-languages=c,c++
You should again replace the ’powerpc’ with the name of the architecture for which you’re building the
crosscompiler
and libraries.
3. Build and install the cross-compiler and libraries by.
make -w all install
4. Return to the directory containing the tool and library sources.
cd ..
2.4 Get, build and install RTEMS
2.4.1 Download the RTEMS source from the OAR web server.
At the time of writing no release of RTEMS was capable of supporting EPICS so you had to, and may still
have to,
work with a developer’s snapshot. The latest snapshot is available in
http://www.rtems.com/ftp/pub/rtems/4.6.99.2/rtems-4.6.99.2.tar.bz2
The compressed tar archive in this directory can be downloaded using a web browser or a command-line
program
such as curl or wget:
curl --remote-name
’http://www.rtems.com/ftp/pub/rtems/4.6.99.2/rtems-4.6.99.2.tar.bz2’
or
wget --passive-ftp --no-directories --retr-symlinks
’http://www.rtems.com/ftp/pub/rtems/4.6.99.2/rtems-4.6.99.2.tar.bz2’
Depending on the type of firewall between your machine and the OAR FTP server you may need to
remove the
--passive-ftp option from the wget command.
When you are done you should have the compressed archive with a name something like
rtems-4.7.tar.bz2
2.4.2 Unpack the RTEMS sources
Change to your RTEMS source directory and unpack the RTEMS sources by:
bzcat rtems-4.7.tar.bz2 | tar xf -
This will create the directory rtems-4.7 and unpack all the RTEMS source into that directory.

2.4.3 Make changes to the RTEMS source to reflect your local conditions.

Some of the board-support-packages distributed with RTEMS may require modifications to match the
hardware in use at your site. The following sections describe changes commonly made to two of these
board-support-packages.

PC-x86
A change I like to make to the RTEMS pc386 source is to increase the number of lines on the console
display from 25
to 50 since I find that the output from some EPICS commands scrolls off the display when only 25 lines are
present.
To make this change, add the ‘#define’ line shown below

 IOC9010/PS/2.3

Page 55

rtems-4.7/c/src/lib/libbsp/i386/pc386/start/start16.S
+--*/
#include <bspopts.h>
#define RTEMS_VIDEO_80x50
/*--+ | Constants
Another change I make is to automatically fall back to using COM2: as a serial-line console (9600-8N1) if
no video
adapter is present. This allows the pc386 BSP to be used on conventional PCs with video adapters as well
as with
embedded PCs (PC-104) which have no video adapters. To make this change, add the ‘#define’ line
shown below
6
rtems-4.7/c/src/lib/libbsp/i386/pc386/console/console.c
*/
rtems_termios_initialize ();
#define RTEMS_RUNTIME_CONSOLE_SELECT
#ifdef RTEMS_RUNTIME_CONSOLE_SELECT
/*
* If no video card, fall back to serial port console
2.4.4 Build and install RTEMS
1. It is best to start with a clean slate. Make very sure you’re in the right directory before running the rm
command!
cd /usr/local/rtems/source
rm -rf build
mkdir build
cd build
2. Configure RTEMS for your target architecture:
cd /usr/local/rtems/source/build
../rtems-4.7/configure --target=powerpc-rtems4.7 \
--prefix=/usr/local/rtems/rtems4.7 \
--enable-cxx --enable-rdbg --disable-tests --enable-networking \
--enable-posix --enable-rtemsbsp=mvme2100 \
You should replace the ‘powerpc’ with the name of the architecture for which you’re building RTEMS.
Common
alternatives are ‘m68k’ and ‘i386’ for the Motorola M68k and Intel x86 family of processors, respectively.
Your should replace the ‘mvme2100’ with the board-support packages for your particular hardware
You can build for more than one board-support package by specifying more names on the command line.
For
example, you could build for a Arcturus uCDIMM ColdFire 5282 system and an MVME-167 system by:
cd /usr/local/rtems/source/build
../rtems-4.7/configure --target=m68k-rtems4.7 \
--prefix=/usr/local/rtems/rtems4.7 \
--enable-cxx --enable-rdbg --disable-tests --enable-networking \
--enable-posix --enable-rtemsbsp="uC5282 mvme167" \
2.5 Get, build and install some RTEMS add-on packages
The EPICS IOC shell uses the the libtecla or GNU readline package to provide command-line editing and
command
history. While the IOC shell can be compiled without these capabilities I think they’re important enough to
warrant
making the effort to download and install the extra packages. GNU readline is more well-tested, but libtecla
does not
bring along the problems associated with the GNU Public License.
EPICS can use either TFTP or NFS for remote file access. NFS provides considerably more flexibility so
it’s a good
idea to install this add-on package as well.
7
2.5.1 Download the add-on package sources

 IOC9010/PS/2.3

Page 56

The latest versions of these files are in
ftp://ftp.rtems.com/pub/rtems/snapshots/contrib/add_on_packages/
The compressed tar archive in this directory can be downloaded using a web browser or a command-line
program
such a wget (note that the wget command example has been split to make it fit on this page):
wget --passive-ftp --no-directories --retr-symlinks
"ftp://ftp.rtems.com/pub/rtems/snapshots/contrib/add_on_packages/rtems-addon-packages-
20041017.tar.Depending on the type of firewall between your machine and the OAR FTP server you may
need to remove the
--passive-ftp option from the wget command.
When you are done you should have the compressed archive with a name something like
rtems-addon-packages-20041017.tar.bz2
2.5.2 Unpack the add-on package sources
Change to your RTEMS source directory and unpack the RTEMS sources by:
cd /usr/local/rtems/source
bzcat rtems-addon-packages-20041017.tar.bz2 | tar xf -
This will unpack the source for all the RTEMS packages into a directory named
rtems-addon-packages-20041017
2.5.3 Set the RTEMS MAKEFILE PATH environment variable
The makefiles in the RTEMS packages use the RTEMS_MAKEFILE_PATH environment variable to
determine the
target architecture and board-support package. For example,
export RTEMS_MAKEFILE_PATH=/usr/local/rtems/rtems4.7/powerpc-rtems4.7/mvme2100
will select the Motorola Power PC architecture and the RTEMS mvme2100 board-support package.
2.5.4 Build and install the add-on packages
The bit script in the packages source directory builds and installs all the add-on packages. To run the
script change
directories to the add-on packages directory and execute:
sh bit
If you are building for more than one architecture or board-support package, you must run the bit script
once for each
variation with RTEMS_MAKEFILE_PATH set to the different architecture and board-support package.
2.6 Try running some RTEMS sample applications (optional)
The RTEMS build process creates some sample applications. If you’re just getting started with RTEMS it’s
probably
a good idea to verify that you can actually run a simple RTEMS application on your target hardware before
trying to
run a full-blown EPICS IOC application.
The actual method of loading an application into a target processor is hardware-dependent. Section 4.1.3
describes a
method which may be used with RTEMS mvme2100 targets.
8

Chapter 3
EPICS Base
The first step in building an EPICS application is to download the EPICS base source from the APS server
and unpack
it. The details on how to perform these operations are described on the APS web pages and will not be
repeated here.
Make sure you get the R3.14.7 or later release of EPICS.
3.1 Specify the location of RTEMS tools and libraries
You must first let the EPICS Makefiles know where you’ve installed the RTEMS development tools and
libraries. The
default location is
/usr/local/rtems/rtems4.7

 IOC9010/PS/2.3

Page 57

If you’ve installed the RTEMS tools and libraries in a different location and have not created a symbolic link
from
/usr/local/rtems/rtems4.7
to wherever you’ve installed RTEMS you need to edit the EPICS configuration file
configure/RELEASE
In this file you’ll find the lines
RTEMS_BASE=/usr/local/rtems/rtems4.7
RTEMS_VERSION=4.7
while will have to be changed to reflect the directory where you installed RTEMS.
If you installed the RTEMS readline or tecla add-on packages you can edit your EPICS local configuration
file
(configure/os/CONFIG_SITE.Common.RTEMS) and change the EPICSCOMMANDLINE_LIBRARY
definition
from EPICS to READLINE or LIBTECLA, respectively. If you don’t want to use NFS to access remote files
you
can add
OP_SYS_CFLAGS += -DOMIT_NFS
to this file.
3.2 Specify the network domain
If you’re using neither DHCP/BOOTP not non-volatile RAM to provide network configuration information to
your
RTEMS IOCs you should edit your EPICS local configuration file
(configure/CONFIG_SITE.Common.RTEMS)
and specify your Internet Domain Name as:
9
OP_SYS_CFLAGS += -DRTEMS_NETWORK_CONFIG_DNS_DOMAINNAME=your.dnsname.here
3.3 Specify the network interface
Some RTEMS board support packages support more than one type of network interface. The pc386 BSP,
for example,
can be configured to use several different network interface cards. By default the EPICS network
configuration for
the pc386 BSP loads network drivers for all network interfaces which support run-time probing so if you’ve
got one
of these network interfaces you don’t need to make any changes to the EPICS network configuration. If
not, see the
comments in
src/RTEMS/base/rtems_netconfig.c
for instructions on selecting a network interface card when building your EPICS application.
3.4 Specify the target architectures
The configure/CONFIG_SITE file specifies the target architectures and board support packages to be
supported.
For example, I regularly build for a single target:
CROSS_COMPILER_TARGET_ARCHS=RTEMS-mvme2100
If you want to build for multiple RTEMS targets you would change this line to something like
CROSS_COMPILER_TARGET_ARCHS=RTEMS-mvme2100 RTEMS-uC5282 RTEMS-pc386
The format of the target architecture names is RTEMS-bspname, where RTEMS- indicates that the
RTEMS development
tools and libraries should be used, and bspname is the name of the RTEMS target architecture and board
support
package used back in section 2.4.4.
If you build EPICS base on multiple host architectures and want to build RTEMS target support on only one
of those
host architectures the target specification can instead be performed in
configure/os/CONFIG_SITE.<hostArch>.Common/CONFIG_SITE
3.5 Build EPICS base
This step is very simple. Just change directories to the EPICS base directory and run

 IOC9010/PS/2.3

Page 58

make
After a while you’ll end up with a working set of EPICS base libraries and tools.
10

Chapter 4
EPICS Applications
Now that you’ve built the EPICS base libraries you’re ready to build and run your first EPICS application.
Once you’ve
got this application running you can forget about this tutorial and revert to using the standard EPICS
documentation.
You can start with your own special application or you can start with the example application that is
provided with the
EPICS distribution. The following sections describe the procedure to create, build and run this example
application.
4.1 The EPICS example application
4.1.1 Build the example application
1. Create a new directory to hold the application source and then ‘cd’ to that directory.
2. Run the makeBaseApp.pl program to create the example application:
makeBaseApp.pl -t example test
makeBaseApp.pl -i -t example -a RTEMS-mvme2100 test
If you get complaints about not being able to run these commands you’ve probably forgotten to put the ‘bin’
directory created in the previous section on your shell executable search path.
The ‘test’ in the two makeBaseApp.pl commands can be replaced with whatever name you want to give
your example application. The ‘RTEMS-mvme2100’ can be replaced with whatever target architecture you
plan to use to run the example application.
3. Build the example application by running
make
4.1.2 Install the EPICS IOC files on the TFTP/NFS server
The application build process creates db and dbd directories in the top-level application directory and
produces a
set of IOC shell commands in the st.cmd file in the iocBoot/ioctest directory. If you chose an application
name different than test in the previous step, the directory name will change accordingly. These directories
and their
contents must be copied to your TFTP/NFS server. The actual location depends upon the remote file
access technique
being used as described in the following section.
11
4.1.3 Run the example application on an RTEMS IOC
Everything’s now ready to go. The only item left is arranging some way of loading the RTEMS/EPICS
application
executable image into the IOC. There are many ways of doing this (floppy disks, PROM images, etc.), but I
find
using a BOOTP/DHCP/TFTP server to be the most convenient. The remainder of this section describes
how I load
executables into my RTEMS-mvme2100 and RTEMS-pc386 IOCs. If you’re running a different type of IOC
you’ll
have to figure out the required steps on your own. The RTEMS documentation may provide the required
information
since an EPICS IOC application is an RTEMS application like any other.
Some RTEMS board-support packages require an NTP server on the network. If such an IOC doesn’t
receive a timesynchronization
packet from an NTP server the IOC time will be set to 00:00:00, January 1, 2001.
4.1.4 Location of EPICS startup script
If you’re using BOOTP/DHCP to provide network configuration information to your IOC you should use
DHCP sitespecific

 IOC9010/PS/2.3

Page 59

option 129 to specify the path to the IOC startup script. If you’re using PPCBUG you should set the NIOT
‘Argument File Name’ parameter to the IOC startup script path.
If you’re using NFS for remote file access the EPICS initialization uses the startup script pathname to
determine the
parameters for the initial NFS mount. If the startup script pathname begins with a ‘/’ the first component of
the
pathname is used as both the server path and the local mount point. If the startup script pathname does
not begin with
a ‘/’ the first component of the pathname is used as the local mount point and the server path is “/tftpboot/”
followed by the first component of the pathname. This allows the NFS and TFTP clients to have a similar
view of the
remote filesystem.
If you’re using TFTP for remote file access the RTEMS startup code first changes directories to
/epics/hostname/
within the TFTP server, where hostname is the Internet host name of the IOC. The startup code then reads
IOC shell
commands from the st.cmd script in that directory. The name (st.cmd) and location of the startup script are
fixed
from the IOCs point of view so it must be installed in the corresponding location on the TFTP server. Many
sites
run the TFTP server with an option which changes its root directory. On this type of system you’ll have to
copy the
startup script to the /epics/hostname/ directory within the TFTP server’s root directory. On a system whose
TFTP
server runs with its root directory set to /tftpboot the startup script for the IOC whose name is norumx1
would
be placed in
/tftpboot/epics/norumx1/st.cmd
The application build process creates db and dbd directories in the top-level application directory. These
directories
and their contents must be copied to the IOC’s directory on the TFTP server. For the example described
above the
command to install the files for the norumx1 IOC is
cp -r db dbd /tftpboot/epics/norumx1
MVME2100 Using PPCBUG
1. Use the PPCBUG ENV command to set the ‘Network PReP-Boot Mode Enable’ parameter to ‘Y’.
2. Use the PPCBUG NIOT command to set the network parameters. Here are the parameters for a test
IOC I use:
Controller LUN =00
Device LUN =00
Node Control Memory Address =FFE10000
Client IP Address =192.168.8.8
Server IP Address =192.168.8.131
Subnet IP Address Mask =255.255.252.0
Broadcast IP Address =192.168.11.255
12
Gateway IP Address =0.0.0.0
Boot File Name ("NULL" for None) =/epics/test/bin/RTEMS-mvme2100/example.boot
Argument File Name ("NULL" for None) =/epics/test/iocBoot/iocexample/st.cmd
Boot File Load Address =001F0000
Boot File Execution Address =001F0000
Boot File Execution Delay =00000000
Boot File Length =00000000
Boot File Byte Offset =00000000
BOOTP/RARP Request Retry =00
TFTP/ARP Request Retry =00
Trace Character Buffer Address =00000000
BOOTP/RARP Request Control: Always/When-Needed (A/W)=W

 IOC9010/PS/2.3

Page 60

BOOTP/RARP Reply Update Control: Yes/No (Y/N) =Y
3. Set up your TFTP/NFS servers. PPCBUG uses TFTP to load the executable image then the EPICS
initialization
uses NFS to read the EPICS startup script (the ‘Argument File Name’ in the NIOT parameters). I set the
TFTP
server root to /tftpboot and arrange for the NFS server to export /tftpboot/epics to the IOCs. This
arrangement
lets me simply copy the application tree, beginning at the <top> directory to the TFTP/NFS server area.
PC386
1. Install an EtherBoot bootstrap PROM image obtained from the ‘ROM-o-matic’ server (http://www.rom-
omatic.
net/) on the IOC network interface cards.
2. Set up your BOOTP/DHCP server to provide the network configuration parameters to the IOC.
3. The TFTP and NFS servers can be configured as noted above.
Arcturus uCDIMM ColdFire 5282
1. Use the bootstrap setenv command to set the EPICS and network configuration parameters:
IPADDR0=192.168.8.27
HOSTNAME=ioccoldfire
BOOTFILE=epics/ucdimm/bin/RTEMS-uC5282/ucdimm.boot
NAMESERVER=192.168.8.167
NETMASK=255.255.252.0
CMDLINE=epics/i2c/iocBoot/ioci2c/st.cmd
SERVER=192.168.8.161
NFSMOUNT=106.74@nfssrv:/export/nfssrv:/home/nfssrv
2. Use the bootstrap tftp command to load the IOC application image (which may include a tar image of
the
in-memory filesystem contents in which case the CMDLINE will likely look something like /st.cmd and the
NFSMOUNT need not be present).
3. Use the bootstrap goram command to start the application or the program command to burn the image
into the
on-board flash memory. In the latter case you may want to also use the setenv command to set the
AUTOBOOT
environment variable.
The cexp package can be used to incrementally load your application components. This package can not
be distributed
with RTEMS or EPICS since it uses components covered by the GNU Public License.
13

Appendix A
Script to get and build the
cross-development tools
If you’re feeling brave you can turn loose the following script. It attempts to download, unpack, configure,
build and
install the GNU cross-development tools and libraries for one or more target architectures. To use the
script, set the
ARCHS environment variable to the architectures you wish to support, then
sh getAndBuildTools.sh
#!/bin/sh

Get, build and install the latest cross-development tools and libraries

Specify the architectures for which the tools are to be built
To build for single target: ARCHS="m68k"

 IOC9010/PS/2.3

Page 61

ARCHS="${ARCHS:-m68k i386 powerpc}"

Specify the versions

GCC=gcc-4.1.0
BINUTILS=binutils-2.16.1
NEWLIB=newlib-1.14.0
BINUTILSDIFF=20050816
GCCDIFF=
NEWLIBDIFF=
RTEMS_VERSION=4.7

Where to install

PREFIX="${PREFIX:-/usr/local/rtems/rtems-${RTEMS_VERSION}}"
14

Where to get the GNU tools

RTEMS_SOURCES_URL=ftp://www.rtems.com/pub/rtems/SOURCES
RTEMS_BINUTILS_URL=${RTEMS_SOURCES_URL}/${BINUTILS}.tar.bz2
RTEMS_GCC_URL=${RTEMS_SOURCES_URL}/${GCC}.tar.bz2
RTEMS_NEWLIB_URL=${RTEMS_SOURCES_URL}/${NEWLIB}.tar.gz
RTEMS_BINUTILS_DIFF_URL=${RTEMS_SOURCES_URL}/${BINUTILS}-rtems-${BINUTILSDIFF}.diff
RTEMS_GCC_DIFF_URL=${RTEMS_SOURCES_URL}/${GCC}-rtems-${GCCDIFF}.diff
RTEMS_NEWLIB_DIFF_URL=${RTEMS_SOURCES_URL}/${NEWLIB}-rtems-${NEWLIBDIFF}.diff

Uncomment one of the following depending upon which your system provides

#GET_COMMAND="curl --remote-name"
GET_COMMAND="wget --passive-ftp --no-directories --retr-symlinks "
GET_COMMAND="wget --no-directories --retr-symlinks "

Allow environment to override some programs

MAKE="${MAKE:-make}"
export MAKE
SHELL="${SHELL:-/bin/sh}"
export SHELL

Get the source
If you don’t have curl on your machine, try using
wget --passive-ftp --no-directories --retr-symlinks <<url>>
If that doesn’t work, try without the --passive-ftp option.

getSource() {
${GET_COMMAND} "${RTEMS_BINUTILS_URL}"
if [-n "$BINUTILSDIFF"]
then
${GET_COMMAND} "${RTEMS_BINUTILS_DIFF_URL}"
fi
${GET_COMMAND} "${RTEMS_GCC_URL}"
if [-n "$GCCDIFF"]
then
${GET_COMMAND} "${RTEMS_GCC_DIFF_URL}"
fi
${GET_COMMAND} "${RTEMS_NEWLIB_URL}"
if [-n "$NEWLIBDIFF"]

 IOC9010/PS/2.3

Page 62

then
${GET_COMMAND} "${RTEMS_NEWLIB_DIFF_URL}"
fi
}

15
Unpack the source

unpackSource() {
rm -rf "{$BINUTILS}"
bzcat "${BINUTILS}.tar.bz2" | tar xf -
for d in "${BINUTILS}"*.diff
do
if [-r "$d"]
then
cat "$d" | (cd "${BINUTILS}" ; patch -p1)
fi
done
rm -rf "${GCC}"
bzcat "${GCC}.tar.bz2" | tar xf -
for d in "${GCC}"*.diff
do
if [-r "$d"]
then
cat "$d" | (cd "${GCC}" ; patch -p1)
fi
done
rm -rf "${NEWLIB}"
zcat "${NEWLIB}.tar.gz" | tar xf -
for d in "${NEWLIB}"*.diff
do
if [-r "$d"]
then
cat "$d" | (cd "${NEWLIB}" ; patch -p1)
fi
done
(cd "${GCC}" ; ln -s "../${NEWLIB}/newlib" newlib)
}

Build

build() {
PATH="${PREFIX}/bin:$PATH"
for arch in $ARCHS
do
rm -rf build
mkdir build
cd build
"${SHELL}" "../${BINUTILS}/configure" "--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${${MAKE}
-w all install
cd ..
rm -rf build
mkdir build
16
cd build
"${SHELL}" "../${GCC}/configure" "--target=${arch}-rtems${RTEMS_VERSION}" "--prefix=${--with-gnu-as -
-with-gnu-ld --with-newlib --verbose \
--with-system-zlib --disable-nls \

 IOC9010/PS/2.3

Page 63

--enable-version-specific-runtime-libs \
--enable-threads=rtems \
--enable-languages=c,c++
${MAKE} -w all
${MAKE} -w install
cd ..
done
}

Do everything

Comment out any activities you wish to omit

set -ex
getSource
unpackSource
build
17

	1. INTRODUCTION
	1.1 9010 IOC Front panel
	1.2 9010 IOC rear panel

	2. OPERATING MODES
	3. The PCI bus register interface
	4. PRODUCT SPECIFICATIONS
	5. APPLICATION REGISTERS
	Carrier Board Config and Switches Register IMR IP Address 2 (Read Only)
	INTS LO. Register Address 8 (Read Only)
	INTS HI Register Address A (Read Only)
	IP CLOCK Register Address 10 (Read/Write)
	FANS_1_2 Register Address 12 (Read Only)
	FANS_3_4 Register Address 14 (Read Only)
	FANS_5_6 Register Address 16 (Read Only)
	FAN_CONT Register Address 18 (Read/Write Only)
	TEMP_FLAG Register Address 1A (Read Only)
	CONFIG_2 Register Address 1C (Read Only)

	6. ID PROM
	7. I/O Connections
	8. Physical Hardware Configuration (Jumpers, Pots etc)
	APPENDIX A
	Guide to Installing Linux on the 9010 IOC Blade

	APPENDIX B
	Guide to Producing Stand Alone Auto Booting 9010 IOC Blade
	Graphical Version
	Command Line Version

	APPENDIX C
	Guide to Installing EPICS on the 9010 IOC Blade

	APPENDIX D
	Guide to Building an EPICS Example
	Quick EPICS Test
	Adding Device Support to an EPICS Example

	APPENDIX E
	Guide to Installing and Running Medm
	Installing the Hytec IOC Blade Linux Kernel 2.6 Driver

	APPENDIX F
	Vsystem Support

	APPENDIX G
	Writing Your Own IP Card Drivers
	Developing and Running Your Own IP Card Drivers

	APPENDIX H
	EPICS Variables Pre-Installed on IOC Blade 9010 Demo

	APPENDIX I
	IOC Blade 9010 API Commands

	APPENDIX J
	IOC Blade 9010 HTML Web Interface

	APPENDIX K
	IOC Blade 9010 TCP/IP Interface

	Introduction
	Command Set
	Status
	Status Command
	Status Command Response

	Read Command
	Read Command
	Read Command Response

	Write Command
	Write Command
	Write Command Response

	APPENDIX L
	Producing Disk Images for the IOC Blade 9010

	APPENDIX L
	Idiots Guide to RTEMS
	Introduction

